Observation of azimuthal anisotropy on multicomponent Atlantis node seismic data

Samik Sil

UT Austin Alumni
Background and Objective

- BP and BHPB collected multicomponent node data from the Atlantis field, GOM.

- Previous forward modeling ignores near surface anisotropy in this field (Regone, 2007). To date no reports are available on anisotropy from this field.

- We investigate the presence of near surface anisotropy using this data set, which may cause an overburden effect in imaging.
Geometry of the ocean bottom node survey

Schematic of the node and shot positioning showing acquisition setup

Shot and receiver co-ordinates shown in red and blue respectively.
Approximate location of one of the nodes used in this study.
Some Problems

- Limited number of available nodes (25).
- High node spacing (~400 m).
- Unavailability of complete well logs.
A circle is drawn around a node as an area of interest.

Radius of the circle is 1 km initially.
Shots at the circumference of the circle are chosen for preparing the gather.

Wave Path in this geometry
Rotation of the data

Therefore to make X and Y component Radial and transverse, we need $(\phi+\theta)$ degree rotation of them.
Amplitude analysis

Amplitude in $x = A \cos(\phi + \theta)$

Amplitude in $y = A \sin(\phi + \theta)$
Orientation Analysis
(vector fidelity)

X component analysis

\[\cos(\varphi_i + \theta) = \frac{X_i}{A_i}, \]

Y component analysis

\[\sin(\varphi_i + \theta) = \frac{Y_i}{A_i}. \]

Where

\[A_i = \sqrt{X_i^2 + Y_i^2} \]

We get \(\theta = \text{South 27}^\circ \text{ East} \)
Total Residuals after rotation

Absolute value of the residuals.

This indicates that the rotation is not perfect.
Azimuthal Gather-Direct wave

Radial

Transverse

Amplitude with azimuth

Note the bias in the amplitude distribution, which may correlate with the rotational error (previous slide)
Observation
Transverses Component

~Zero P-wave energy

Polarity flips
Periodic variation of the S-wave traveltime in the radial component

Polarity flip in transverse

Energy null and polarity flips

1 km
Bigger search radius (2 km)
Observation from another node

1 km
Layer parameter estimation

- We observed traveltime and amplitude variation due to anisotropy from the radial component in the first few layers.

- Amplitude analysis (AVAZ) is performed to estimate the layer properties of those layers.

- To get interval properties, amplitude responses are corrected for overburden effect using an algorithm developed by Li (1997).
Observation in radial components

Studied layers are marked with arrows. Note the typical traveltime and amplitude variations in those layers due to anisotropy.
Amplitude variation of each event after layer stripping

Amplitude patters are fitted with a $A + B \cos^2(\phi - \phi_{SYM})$ function
Observation and assumptions

• We find a constant ϕ_{SYM} value.

• Most of the amplitude plots can be modeled with $[A + B\cos2(\phi - \phi_{SYM})]$ function.

• Therefore we believe the medium is showing HTI symmetry.

• HTI symmetry may be due to alignment of the microcracks or grain boundaries.

• Microcracks and grain boundaries are water filled.
For water filled microcracks or grain boundaries (or fractures):

\[B_{PP} = g \Delta T \]
\[B_{PS} = \frac{\sqrt{g}}{1 + \sqrt{g}} \Delta T \]

Here, \(g = \left(\frac{V_S}{V_P} \right)^2 \) and \(\Delta T \) is the tangential weaknesses.

We obtain \(B_{PP} \) and \(B_{SS} \) values by curve fitting.

Therefore solving the above equations we can obtain \(g \) and \(\Delta T \).

We can also show for water filled system:

\[\Delta T = -\frac{\delta^{(v)}}{2g} \]

Therefore we can also find \(\delta^v \)
Results from one node

<table>
<thead>
<tr>
<th>Properties</th>
<th>Layer 1</th>
<th>Layer 2</th>
<th>Layer 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (PP)</td>
<td>-0.041</td>
<td>0.016</td>
<td>0.004</td>
</tr>
<tr>
<td>B (PS)</td>
<td>-0.082</td>
<td>0.210</td>
<td>0.101</td>
</tr>
<tr>
<td>δ(v)</td>
<td>0.080</td>
<td>-0.032</td>
<td>0.008</td>
</tr>
<tr>
<td>V_p/V_s</td>
<td>2.770</td>
<td>12.140</td>
<td>12.400</td>
</tr>
</tbody>
</table>

Symmetry axis (φ_{SYM}) = East 15° North.
Azimuth of the X axis of the receiver (θ) = South 27° East
Results from other studies

Backus et al. 2006

Hardage et al. 2007

No data is available on anisotropy analysis.
• Atlantis data shows the presence of azimuthal anisotropy which can be modeled using an HTI model.

• Anisotropic signatures are present in the form of S-wave splitting, P and S wave traveltime and AVO anomaly.

• Layer stripping is applied to study interval parameters.

• A nearly constant value for the strike symmetry axis is obtained from the analysis of the amplitude variation of both P and S-wave (East 15° North).

• High value of Vp/Vs is observed. Similar high values are observed by others.

• Small Vp/Vs value in the top layer could be due to wrong picking of the event.

• Moderate anisotropic parameters are obtained.

Conclusions
Future works for the UT students

• Traveltime anisotropy analysis is not performed.

• Even though overburden effect is taken care of to estimate the anisotropic parameters, used method is not robust.

• No physical model is generated using well log data to correlate the events.

• There are several other nodes left to perform anisotropy analysis.

• Our work identified presence of seismic anisotropy, but estimation of anisotropic parameters is not final.

• Cause of anisotropy (which may be stress induced) is not yet constrained.
Acknowledgements

- BP Houston and BHP Billiton
- Jerry Beaudoin and John Howie.
- Robert Tatham
- Eike Rietsch
- Enru Liu
- X-Y Li
- Jeff Kao
- ConocoPhillips for permitting me to present this work.