Isotropic and Anisotropic Seismic Characterization of Woodford Shale, at Pecos County, Delaware Basin, West Texas

Na Shan

SCHOOL OF GEOSCIENCES

- Overview and Well log Observation
- VTI Model
- HTI Model
- Orthorhombic Model
- Sensitivity of seismic model
- Conclusion

- Overview and Well log Observation
- VTI Model
- HTI Model
- Orthorhombic Model
- Sensitivity of seismic model
- Conclusion

West Texas Setting

Modified by Walaa Ali, M from King, 1942. Steve Ruppel.

Delaware Basin Stratigraphy

Woodford Formation

- High organic matter (high GR), brownish-black fissile shale
- Thickness varies from 96- 460ft (30 m to 200 m), in the Delaware Basin
- In West Texas and southeastern New Mexico, it contains about 80 x 10^9 bbl of oil (240 x 10^12 ft3 of natural gas equivalent)
- Production usually contains viable lithofacies like chert, sandstone, dolostone and siltstone where are highly fractured.

- Well log Observation
- VTI Model
- HTI Model
- Orthorhombic Model
- Sensitivity of seismic model
- Conclusion

VTI-Middle Layer

GR(gAPI)

200

22

• .:

0

N.,

12775

12825

12875

12925

12975

Depth(ft)

Vertical Impulsive Source Generate PP, PS and SS wave Z Component (Vertical), X **Component** (Radial)

ντι

VTI-Isotropic X Component

- Well log Observation
- VTI Model
- HTI Model
- Orthorhombic Model
- Sensitivity of seismic model
- Conclusion

HTI Model

SCHOOL OF GEOSCIENCES

HTI-Isotropic θ=45 X Component

5	2.0	2	2.0	2.0	1 1
. –	-	-	- 5		
			• •	•	
			,,		
					\prod
		•			
Π		-	,,		\prod
IT					\prod
Π					
IT					
Π					
IT	•				
T			,		
Π					
Π	}			• •	
	-		-		
			E	1	
-	-	-	TILE	(sec)	1
			, .		
, -					: _
	_	-	-	_	
IT					Π
Π					\prod
Π					\prod
			• •		
Π					\prod
T					
IT					
Π			}}		
Π				1	
Π					
Π		 }}			
T		- - - - - -	,, , ,		
T		 }}	<i>}</i> }		
Π					
Π				• .	
			, ,		
Π					
Π					
Π					
Π					
		•			
[]				•	
					Π
					\prod
T	Į				Π
T					Ι

Shot at (0,0) 2D grid of receivers in XY Plane

HTI(Dry)-Isotropic **Z Component**

The largest difference lies at X direction.

- Well log Observation
- VTI Model
- HTI Model
- Orthorhombic Model
- Sensitivity of seismic model
- Conclusion

Orthorhombic - Isotropic Z Component

Can't find a certain azimuth of largest amplitude difference

- Well log Observation
- VTI Model
- HTI Model
- Orthorhombic Model
- Sensitivity of seismic model
- Conclusion

HTI-Crack Density

- Well log Observation
- VTI Model
- HTI Model
- Orthorhombic Model
- Sensitivity of seismic model
- Conclusion

Conclusions

- VTI: obvious seismic difference for PP and PS at middle to far offset compared to Isotropic model.
- HTI: obvious amplitude change with azimuth. The largest difference lies in X direction for Z component, compared to isotropic model.
- Orthorhombic: obvious amplitude change with azimuth, but cannot find a certain azimuth to characterize the largest difference for Z component

Conclusions

Sensitivity

 HTI: crack density might be a sensitive parameter and the most sensitive AVO changes are the PP reflection at far offset of X component and PS reflection at middle offset of X component.

Future Work

- Test the sensitivity of VTI model
- Test the sensitivity of model of different gas saturations
- Hopefully, I could get more logs and seismic to correlate them and go on with anisotropy analysis

Acknowledgement

Robert Tatham Mrinal Sen **Kyle Spikes Steve Ruppel** Walaa Ali Tom Hess Samik Sil Yi Tao

THE UNIVERSITY OF TEXAS AT AUSTIN JACKSON SCHOOL OF GEOSCIENCES

Thank You

