
SENSITIVITY ANALYSIS OF TUSCALOOSA SANDSTONES TO CO2 SATURATION, 

CRANDIELD FIELD, CRANFIELD, MS. 

 

Russell Carter 

 

Department of Geological Sciences 

The University of Texas at Austin 

 

ABSTRACT 

 

Advances are continually being made in the field of seismic reservoir 

characterization, but many problems exist in characterizing the lateral extent and volume 

of injected CO2 in subsurface formations using well log and seismic data.  In this study I 

use rock physics modeling, fluid substitution, AVA analysis, and statistical classification 

to analyze and model well log data.  These tools are used to better understand how to 

effectively characterize and monitor CO2 injected into a brine reservoir. Rock physics 

modeling was initially completed to obtain reservoir parameters, which were then used 

to generate synthetic velocity and density logs for different fluid mixtures. The synthetic 

logs were used in a Monte Carlo AVA simulation and statistical rock physics analysis. 

The rock physics modeling showed that the reservoir was a stiff cemented sandstone. 

The AVA analysis indicated that the cemented sandstone was sufficiently stiff that the 

fluid component was not easily discernable. Additionally, the contrast between the shale 

seal and the reservoir was sufficiently large that AVA analysis did not show useful 

difference among different CO2 concentrations at this study area. However, when using 

the statistical rock physics to differentiate between CO2 and brine, Vp/Vs was an 

important parameter to use to maximize percentages of correctly mapping modeled data 

to its respective fluid class. This is important because it illustrates the sensitivity and 

uncertainty of using elastic properties to characterize CO2 saturation at this site. 

 

INTRODUCTION 

 

Quantitative seismic interpretation techniques have been used with great success in locating 

and characterizing hydrocarbon reservoirs (Bosch et al., 2009; Russell et al., 2003; Mukerji et al., 

2001; and Avseth et al., 2011).  These techniques are well developed, and in many cases they are 

quite accurate in relating seismic velocity to fluid saturation and other reservoir properties of 

interest.  This study aims to use and adapt these techniques for use in a reservoir containing 

injected CO2.  Injected CO2 has very different physical properties than hydrocarbons when 

contained within reservoirs.  Injection of CO2 is increasingly being used as a means of enhanced 

oil recovery (EOR), and there is a steady push towards injecting CO2 as a means of permanent 

sequestration. Because of these applications, it is important to understand how injected CO2 

affects the elastic parameters of reservoirs.  Conventional fluid substitution work focused 

primarily on modeling elastic properties and seismic data with different fluid-saturation 

scenarios to help distinguish between brine and hydrocarbon reservoirs (Das and Batzle, 2008; 

Artola and Alvarado, 2006).  Only recently has interest grown to model the effects of CO2 on the 

elastic properties of the reservoir. 
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Recent studies completed on CO2 injection and monitoring have covered a wide range of 

topics. The feasibility of time-lapse seismic monitoring of CO2 saturation has been looked at by 

Lumley (2010) who studied the fluid properties of CO2 as a function of temperature, pressure 

and saturation.  The same study also outlined the challenges of time-lapse monitoring of CO2, 

including repeatability, CO2-rock interactions, in situ CO2 properties, pressure changes, and non-

uniqueness.  Time-lapse applications have been completed by Ghaderi and Landro (2009) who 

examined amplitude and time shifts to estimate thickness and velocity changes in the Sleipner 

field.  Processing techniques for using time-lapse vertical seismic profiles (VSPs) as a means of 

monitoring CO2 was completed by Cheng at al. (2010).  Their findings were that VSP data could 

be used for time-lapse monitoring of CO2 injection, provided that the processing between 

vintages of VSPs was performed to equalize first-break time alignment, frequency spectra, and 

gain levels. Work done to image CO2 plumes using simulated crosswell data has been done by 

Morency et al. (2011) using finite-frequency sensitivity kernels.  They compared the results of 

using compressional versus elastic wave modeling.  Including shear wave data in their 

simulations improved the resolution of their results.  A quantitative approach to seismic 

monitoring of CO2 was taken by Chadwick et al. (2010).  They looked at multiple vintages of 

data from the Sleipner field and applied a prestack stratigraphic inversion algorithm and 

compared it to poststack inversion methods.  Prestack inversion characterized better thin intra-

reservoir mudstone and sand layers compared to using poststack inverstion. 

   

This study differs from previous studies as it combines rock physics modeling, fluid 

substitution and statistical analysis to differentiate between brine and CO2 saturated zones in the 

reservoir.  Data for this work comes from the Cranfield reservoir located in Cranfield, MS.  The 

data set includes well-log data from both injection and monitoring wells, 3-D time-lapse surface 

seismic data, and time-lapse VSP data.   This study used Gassmann (1951) fluid substitution to 

model a shale-sandstone interface with varying mixtures of CO2 and brine in the underlying sand 

interval.  A shale-sandstone interface was chosen to represent the interface between the top of the 

reservoir and the overlying shale layer.  Due to buoyant rising of CO2 it is anticipated that 

injected CO2 will rise and accumulate along this interface.  From the modeled data, amplitude 

versus angle (AVA) analysis was completed to see the effects of increasing levels of CO2 on the 

angle-dependent reflectivity.  AVA signatures have proven useful in identifying natural gas and 

have been organized into different classes (Rutherford and Williams, 1989; Castagna et al., 1998; 

and Simm et al., 2000).   Reflection coefficients from the AVA analysis were plotted against 

modeled data from the fluid substitution analysis for use in a statistical classification scheme.  

The classification scheme compared modeled data to multiple probability density functions 

(PDFs) to determine which PDF had the highest probability at the data location.    

 

DATASET 

 

The Cranfield study area consists of a sandstone reservoir of the Lower Tuscaloosa 

Formation, which is dated as Upper Cretaceous.  The reservoir has porosity of about 20% and 

permeabilites in the range of 0.1–1000 millidarcies (Lu, et al., 2012).  Regionally the reservoir 

and seals are part of a sequence of sands and shales that are found in the Late Cretaceous 

Tuscaloosa Groups.  A salt body underlies the entire complex, whose buoyancy is forcing a local 
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anticline.  A large regional seal of marine shale and mudstone exists in the Middle Tuscaloosa 

Formation (Lu et al., 2012). 

 

The Cranfield Field reservoir was discovered in 1943 and subsequently abandoned in 1966.  

The site was recently selected as a location for EOR using CO2 injection (Lu et al., 2012) due to 

regional infrastructure, regionally available CO2 and the high potential of economical, enhanced 

oil and gas production.  The Gulf Coast Carbon Center of the Bureau of Economic Geology at 

the University of Texas at Austin is working in conjunction with both the Southeast Regional 

Carbon Sequestration Partnership and the field operator on the project (Lu et al., 2012).  Over the 

entire field, the operator has injected a total of 2.5 million tons of CO2 since the start of injection.  

Data for this project comes from the 1 km
2
 Detail Area Study (DAS), outlined in red in Figure 1.  

The DAS consists of 1 injection well and two down dip monitoring wells (CFU 31#F1, 2, and 3, 

respectively) injection rates at CFU 31#F1 (F-1) ranged from 200–500 tons per day during 

injection.  Data used for this project came from the observation well, CFU 31#F2 (F-2). 

 

 
Figure 1. The entire Cranfield site.  Data for this project came from the DAS  (red box).  The 

DAS contains one injection well, 31F-1 (F-1), and two monitoring wells, 31F-2 (F-2) and 31F-

3 (F-3).  Modified from Lu et al. (2012). 

 

Figure 2 shows the Vp, Vs, and gamma ray logs in the reservoir interval for well F-2.  Data 

from the well logs show two distinct layers. The blue line shows the entire reservoir zone, the red 

overlies the upper reservoir zone from about 10445 to 10480 feet and the green overlay indicates 

the lower reservoir zone at approximately 10485 to 10500 feet.  The increase in the gamma ray 

count at about 10485 ft indicates that a shale layer divides the upper and lower reservoir zones. 
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Figure 2.  Well F-2.  The red line shows the shallower reservoir zone, which extends from about 

10445 to 10480 ft and the green line shows the deeper reservoir zero, which extends from 

about 10485 to 10500.  The shale layer that divides the two reservoir zones is apparent from 

the increase in the gamma ray count between 10480 and 10490 ft.  

  

THEORY AND METHODS 

 

This study was a multi-step process that integrated rock physics modeling, fluid substitution, 

AVA and statistical classification.  Rock physics modeling linked reservoir properties to elastic 

parameters for use in the fluid substitution and AVA phases of this project.  Statistical 

classification was then run on the results from the fluid substitution and the AVA.  The results 

from the statistical classification indicated which combinations of elastic properties provided the 

best discrimination of different CO2-brine mixtures. 

 

Rock Physics Modeling 

 

Contact theory models are based on the idea that by changing the number of grain contacts 

and the stiffness of these contacts the overall stiffness of the rock will be changed (Dvorkin et 

al., 1991, and Dvorkin et al., 1994).  The contact cement model, used in this study, is based on 

contact theory with the addition of cement at grain contacts.  In the model cement can be 

deposited in one of two ways (Figure 3). The first approach is to deposit cement concentrically 

and evenly around each grain. This coats the grains and subsequently decreases porosity.  The 

second method of cement deposition places cement only at the grain boundaries.  For purposes of 

this model, the first technique of cement deposition was used.   
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Figure 3.  A schematic of the contact cement model. Cement can be deposited concentrically 

around the grain following the lower path on the graph or only at grain contacts, following 

the upper line on the graph.  As cementation increases, porosity decreases, and the elastic 

moduli increase. 

 

Petrography studies on core samples from the F-2 well indicate that mineral composition of 

the reservoir consisted of 60-80% quartz, 10-20% clay, and 10-20% feldspar, with the remainder 

composed of small percentages of muscovite, calcite, and other minerals (Kordi et al., 2010).  

These compositions were used to calibrate the Hashin-Shtrikman (1963) bounds.  In turn these 

bounds were used to provide rock-frame moduli at different porosities for use in the contact 

cement model (Dvorkin and Nur, 1996).  Models corresponding to this method explained the 

trend in the data from the shallower portion of the reservoir (Figure 4).  For the deeper portion of 

the reservoir a modified Hashin-Shtrikman lower bound was used (Figure 5) (Avseth et al., 

2005).  The modified Hashin-Shtrikman lower bound can be implemented to represent sorting 

trends in the data.  This lower bound shows that the grains in the shallower part of the modeled 

interval are relatively well sorted compared to the grains in the deeper portion of the modeled 

interval.  This model provides an interpretation for the deeper reservoir interval of a grain pack 

with a mixture of both coarse and fine grains, which causes a lower porosity than the well sorted 

grains of the shallower portion.  The contact cement model and the modified Hashin-Shtrikman 

lower bound provide accurate and predictive starting rock models for this study. 
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Figure 4.  Vp versus total porosity (points) from the upper reservoir zone, colored by depth.  

Lines are from the constant cement model for different rock frame composition.  The blue 

line represents 80% quartz, and 5% each clay, feldspar, muscovite, and calcite.  The green 

line represents a mineral composition of 70% quartz, 10% each clay and feldspar, 7% 

muscovite, and 3% calcite.  The red line represents  60% quartz and 20% each clay and 

feldspar.  These different compositions bracket the data and follow the same trend as the 

data points although scatter is present in the data. 

 

 

Figure 5.  This figure shows the Vp to porosity colored by depth for the lower reservoir zone.  A 

modified lower Hashin-Shtrikman bound (blue line) represents a sorting trend, and models 

the data points accurately.  The lower bound describes a coarsening upwards sequence of the 

grains with better sorting at the top of the interval relative to the bottom. 
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Fluid Substitution and Upscaling 

 

The first step for fluid substitution was to determine the in-situ moduli of the reservoir, rock 

frame, and pore fluid.  Reservoir mineralogy from Hashin-Shtrikman bounding and contact 

theory models was estimated to be 61% quartz, 18% clay, 17% feldspar, 3% muscovite, and 1% 

calcite.  This composition gives a mineral density of 2.678 g/cc for the reservoir interval and a 

mineralogical basis for calculating the required moduli.  Using the calculated mineral density, 

the density porosity from the well log was corrected.  Initial fluid saturation of the reservoir was 

estimated using Archie’s (1942) law with m and n coefficients of 1.6 and 1.7, respectively.  

 

The method used for fluid substitution in this study was based on the Gassmann equations 

(Gassmann, 1951; Biot, 1956).  Equation 1 is used to calculate bulk moduli, and Equation 2 

demonstrates the assumption that the shear moduli are equivalent in the saturated and dry cases. 

Kdry

K0 -Ksat
=

Kdry

K0 - Kdry
+

K fl

f(K0 -K fl )
                                       (1) 

 

    
 

 

    
                                                         (2) 

 

In these equations Kdry is the dry rock bulk modulus, Ksat is the saturated rock bulk modulus, K0 

is the bulk modulus of the mineral phase of the rock, and Kfl is the bulk modulus of the pore 

fluid.  These equations result in accurate calculations, provided that the following criteria are 

met.  A homogeneous mineral modulus exists; the rock is isotropic; and low frequency to 

maintain pore-pressure equilibrium  (Gassmann, 1951).   

 

For the fluid substitution portion of this study a rewrite of Equation 1 solved for Kdry 

(Equation 3) and Ksat (Equation 4) was used. 

 

Kdry =
Ksat (fK0 K fl +1-f)-K0

fK0 K fl + Ksat K0 -1-f
                                           (3) 

Ksat =
f(1 K0 -1 K fl )+1 K 0 -1 Kdry

(f Kdry )(1 K0 -1 K fl )+ (1 K0 )(1 K0 -1 Kdry )
                              (4) 

 

First Kdry was calculated for the rock frame by using an initial Ksat generated from the Vp, Vs and 

density logs.  A K0 was determined from the mineral composition listed above, and a Kfl was 

determined by using the Sw calculated from Archies law.  Then Kdry was used in conjunction 

with a range of Kfl values, depending on CO2 percentage, to determine Ksat.   

 

To determine the fluid substituted Ksat value, different Kfl values ranging from 100% brine to 

100% CO2 were used in the Gassmann equations.  Intermediate fluid mixtures were calculated at 

25, 50 and 75% CO2 with the remaining pore fluid  modeled as brine.  Fluid properties are listed 

in Table 1.  Properties for CO2 were calculated from Span and Wagoner (1994) for an effective 

pressure of 30 Mpa and a temperature of approximately 100° C.  These were approximate 

reservoir conditions during injection (Lu et al., 2012).  The properties of each brine/CO2 mixture 

were then calculated for each different percent CO2 using both the Voigt (1907) bound 
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representing patchy saturation, and the Reuss (1929) bound, representing uniform saturation 

(Knight and Nolen-Hoeksema,1990). 

 

 

Fluid Density (g/cc) Bulk Modulus (Gpa) 

Brine 1.045 2.2 

CO2 .675 .1275 

 

Table1. Brine and CO2 parameters used for fluid substitution analysis. 

 

Both measured and fluid-substituted velocity and density logs were upscaled using the 

Backus (1962) average to estimate the fluid sensitivity at the seismic scale.  The Backus average 

is the arithmetic average of the density (Equation 5) combined with the harmonic average of the 

elastic moduli (Equation 6).  The result is the long wavelength effective medium velocity 

(Equation 7).  This imitates low-frequency seismic data, as opposed to the high-frequency well 

logs.  The fluid substitution curves were upscaled to 20 and 50 Hz, which were estimated to 

bracket the dominant frequency of surface seismic data. 

rav = fkrk
k

å                                                            (5) 

MEMT = (
fk

M kk

å )-1                                                    (6) 

     √
    

   
                                                (7) 

 

Amplitude Versus Angle Modeling 

 

The next phase of work was AVA modeling.  This was performed by using a half-space 

model.  Elastic properties for the upper layer came from the shale sequence overlying the 

reservoir and the properties for the lower layer came from the reservoir zone.  The AVA 

responses were calculated using the full Knott-Zoeppritz equations (Knott, 1899; Zoeppritz, 

1919).  These equations are used to calculate the reflection coefficients at different angles of 

incidence, written as a single 4x4 matrix (Equation 8). 

           (8) 

 

A Monte Carlo simulation was run to estimate the range of reflection coefficients that could 

be expected between the overlying shale and the reservoir.  A Monte Carlo technique was chosen 

because it returns a range of possible outcomes and allows for the probability of each outcome to 

be determined.  This range of outcomes can be related to the variability in the rock and elastic 

properties.  This is in contrast to calculating an AVA response from the average of the shale 
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layer and an average of the reservoir interval, which would only return one value.  Computing 

just the averages does not provide for variations within each individual layer represented in the 

outcome.  Furthermore, it does not provide a reliable representation of the interface between the 

two layers (Bosch et al., 2007).   

 

Five hundered simulations were computed for each different fluid composition of 0, 25, 50, 

75, and 100% CO2.  In each simulation a single depth was selected randomly from the overlying 

shale zone and from the reservoir zone.  The velocities and densities associated with each of 

these depths were then used to calculate the AVA response out to 30 degrees.  For each fluid 

composition, a bivariate PDF was calculated for the 500 simulations.  Those PDFs indicate the 

probability of a reflection coefficient occurring at a given angle of incidence. 

 

CLASSIFICATION 

 

Synthetic logs calculated using fluid sbustitution were used to generate cross plots of p-

impedance (Ip) to Vp/Vs, Vp, Vs, of Vp to Vp/Vs, Vs, and s-impedance (Is), and of Vs to Vp/Vs 

and Is.  These cross plots were chosen because they represented a wide range of parameter 

combinations.  These combinations can be extracted from well logs and from seismic and VSP 

data.  Extracting these from seismic data is a future research topic.  A bivariate PDF also was 

computed for each crossplot.  These PDFs were used to classify the data in terms of pore fluids. 

 

Classification success rates were calculated by mapping both the measured well log and 

modeled data back to the their respective bivariate PDFs.  Each data point was mapped to the 

PDF that showed the highest probability at the location of the data point.  The success rate was 

defined as the number of correctly classified points divided by the known number of points in 

that class.  In initial tests, modeled data was mapped between pure brine and pure CO2 for 

maximum variability in the elastic response due to fluid content.  The parameter combinations 

that showed the highest success rates were Vp/Vs-Ip, Vp/Vs-Vp and Vp/Vs-Vs. Therefore, these 

combinations of elastic properties were used to examine other fluid compositions.  These fluid 

compositions included 0 and 25, 0 and 50, and 0 and 75 % CO2.  The different CO2 

concentrations were also tested against measured well log data.  When an equal probability 

occurred of a data point belonging to both classes, the data point was mapped to both.  However, 

if probability in both PDFs was 0, the data point was mapped to neither class. 

 

RESULTS 

 

Fluid Substitution and Backus Averaging 

 

The fluid-substitution step resulted in eight modeled Vp and Vs curves and five modeled 

density curves in addition to the measured data (Figure 6).  Each velocity curve corresponds to 

the percent CO2 that comprised the pore fluid and the bound from which the fluid moduli were 

calculated (Voigt or Reuss). The Vs calculated from Gassmann’s equations did not change based 

on the method used to calculate the fluid moduli. The changes in modeled Vs as a function of 

CO2 were based on density. 
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Figure 6.  Panel a shows the fluid substituted velocity curves with fluid moduli calculated from 

the Voigt average. Panel b shows the same, but the fluid moduli were calculated with the 

Reuss average.  Panel c shows Vs data.  In these graphs the blue, green, red, cyan, and 

magenta lines represent pure brine, 25, 50, 75 and 100% CO2, respectively.  The thin black 

line on all graphs is the recorded log data, and it is included as a reference.  Note that in 

panel a there is a uniform spacing between different fluid compositions because the Voigt 

average is linear.  In panel b there is a large gap between the brine saturated curve and the 

curves containing partial or full CO2 saturation because the Reuss average moduli change 

dramatically at low CO2 concentrations and remains fairly flat with increasing CO2.  In 

panel c, because changes in Vs due to fluid substitution are only a function of density, Vs 

increases with increasing gas saturation. 

 

End member (0 or 100% CO2) velocity curves were independent of how the fluids were 

mixed, as expected.  Velocity curves from the reservoir interval, with fluid moduli calculated 

from the Voigt bound, are shown in Figure 6a.  Figure 6b shows the velocity curves for the same 

reservoir interval using the Reuss bound for the fluid moduli for the different fluid compositions.  

Figure 6c shows Vs curves for the reservoir.  In all panels of Figure 6 the blue curve represents a 

100% brine-saturated rock.  The green, red, cyan, and magenta lines show the modeled data for 

25, 50, 75 and 100% CO2, respectively.  The thin black line is the measured log data.  In Figure 

6a there is a uniform spacing between different fluid composition, corresponding to the linearity 

of the Voigt average.  The Reuss average, on the other hand, shows a large decrease in velocity 

with a small amount of dissolved CO2.  Very little difference exists among the lines with CO2 

included.  Figure 6c shows Vs increasing as CO2 saturation increases because density decreases 

as a function of fluid density. 
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Figure 7 shows the same curves as displayed in Figure 6, up-scaled to 50Hz.  It is evident in 

the figures that the difference in the velocity at the log scale between pure CO2 and pure brine 

are larger than the differences between the corresponding velocities at the seismic scale.  This is 

due to the long-wavelength approximation being affected by the reservoir layer and the encasing 

units.  Wavelengths and the distance between the source and receiver are short enough, for well 

log measurements, that only the properties of the reservoir or the shale are measured in each 

sample except for samples take across the reservoir shale interface.  

 
Figure 7.  Panels a, b, and c show the upscaled data from Figure 6 a, b, and c, respectively.  In all 

panels the colored lines represent different fluid compositions upscaled to 50Hz.  The blue 

dashed line in all panels represents a pure CO2 pore fluid upscaled to 20Hz for reference.  

Panel b illustrates that at seismic frequencies, differentiating between different percent CO2 

concentrations would be difficult if the fluids are mixed uniformly. 

 

 

 

AVA 

 

Angle-dependent reflectivity was calculated using the full Zoeppritz equations, for incidence 

angles of zero to thirty degrees.  Five hundred Monte Carlo simulations were computed for each 

fluid composition (0, 25, 50, 75, and 100% CO2).  Additionally, the same number of simulations 

was run based on the measured log data.  Figure 8 shows the AVA plots generated from the logs 

in Figure 6a.  Panels a through e show CO2 percentage in the fluid of 0, 25, 50, 75, and 100, 

respectively.  Panel f shows the AVA responses generated from the measured well log data.  All 

panels show reflection coefficients on the vertical axis and angle of incidence on the horizontal 

axis. Warm colors represent a high probability of generating a given reflection coefficient at a 
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given angle, whereas cool colors indicate a low probability.  The black line represents the mean 

curve for each fluid scenario.  The increase of reflection coefficient with increasing angle is 

consistent with a shale over sand sequence.  In each case, high probability regions correspond to 

negative intercepts and less negative to zero values at 30°. 

 

 

Figure 8.  Each different panels shows a PDF from a Monte Carlo simulation with 500 iterations.  

Warm colors indicate high probability density and cool colors low probability density.  Plots 

a-e were computed with the lines from Figure 6a.  Minimal apparent difference exists 

between the AVA probability plots for pure brine and pure CO2 (a and e).   

 

Figure 9 shows the same information as Figure 8 only the curves used to generate the AVA 

plots were calculated using logs in Figure 6b.  The results in Figure 9 are very similar to those in 

Figure 8 for each corresponding panel.  Negative intercepts are present as are increasing values 

with increasing angle.  Intercept (zero-angle reflection coefficient), is plotted against the AVA 

gradient for 100% brine (blue), 100% CO2 (green), and measured log data (red) (Figure 10).  

Figure 10 illustrates that even for the CO2 and brine end members, there is little variation 

between the intercept and gradient of the modeled data compared to the measure data. 
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Figure 9. This is a similar plot to Figure 8.  However, the logs from Figure 6b were used to compute these 

plots.  Minimal difference betweens exist the plots for pure brine and pure CO2 (a and e).  The end 

members and log data look different from their corresponding plots in Figure 8.  This is because the 

random values selected in this simulation differ from the 500 random values used for the simulation 

used to generate the data for Figure 8.  

 

Figure 10.  This AVA intercept to gradient plot further illustrates the lack of variation among the 

modeled AVA responses.  Green points are for 100% CO2, blue for 100% brine, and red for 

measured log data.  In this diagram all three data sets plot almost directly atop each other with little 

or no statistical variation among them. 
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CLASSIFICATION 

 

Modeled data from the fluid substitution step was plotted to the following cross plots: Ip to 

density, porosity, Vp/Vs, Vp, and Vs.  Vp was plotted against Vp/Vs, Vs, and Is.  And Vs was 

cross plotted against Vp/Vs and Is.  Bivariate PDFs were generated from the data crossplots for 

each class, where class refers to a different fluid composition.  There are six classes total.  Only 

two classes were considered here, those for 100% CO2 and 100% brine.  Each class was mapped 

to its respective PDF to determine the success rate (Figure 11).  Figure 11a shows 100% CO2 

(blue) and 100% brine (green) data plotted by Vp/Vs as a function of Ip.  Panel b and c show the 

PDFs generated from the CO2 and brine data in panel a, respectively.  In panels b and c dark 

colors are areas of high probability, light colors are areas of low probability, and white are areas 

of zero probability.  The success rates for each of the different cross plots tested is recorded in 

Table 2.  The second column shows the success rate of mapping pure CO2 to the correct PDF, 

and the third column shows the success rate of mapping pure brine to the correct PDF.  The two 

fluid end members were chosen because they corresponded to the largest variations in velocity 

and density.  The expectation was that the highest mapping success rate would occur for these 

two classes. 

 

 
Figure 11.  Panel a) Ip as a function of Vp/Vs for 100% CO2 (blue) and 100% brine (green).  b) 

and c) show the bivariate PDFs computed for the data in a), for the 100% CO2 and the 100% 

brine data, respectively.  For b) and c) black and red indicate areas of high probability 

density, wheras light yellow and white indicate areas of low probability or zero probability 

density. 
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Cross Plot Correct map to 100% CO2 Correct map to 100% Brine 

Vp to Ip .917 .319 

Vp/Vs to Ip .722 .620 

Vs to Is .700 .567 

Vp/Vs to Vp .695 .704 

Vp/Vs to Vs .680 .726 

Vs to Ip .617 .807 

Φ to Ip .542 .681 

Vs to Vp .500 .737 

Vp to Is .452 .674 

ρ to Vp .450 .746 

 
Table 2. Success of mapping 100% CO2 and 100% brine to their respective histograms.  Ordered 

by highest to lowest correct map to CO2.  However, the same combination of elastic 

properties did not correspond to the highest success rates for the two fluid classes. 

 

 

The three cross plots that showed the highest success rates for both fluid classes were Vp/Vs-

Ip (Figure 11), Vp/Vs-Vs (Figure 12) and Vp/Vs-Vp (Figure 13).  These are in rows 2,4, and 5 in 

Table 2, respectively.  In Figure 12a Vs as a function of Vp/Vs was used to cross plot 100% CO2 

and 100% brine data, blue and green, respectively.  The data in panel a was used to calculate the 

PDFs shown in panels b and c that correspond to 100% CO2 and 100% brine data, respectively.  

Colors in figures 12a and 12b signify the range of probability from low (light) to high (dark) 

with white showing zero probability.  The axes in Figure 13 show Vp as a function of Vp/Vs.  

Data plotted in Figure 13a corresponds to 100% CO2 (blue) and 100% brine (green).  The 100% 

CO2 data was used to generate the PDF shown in Figure 13b and the 100% brine data was used 

to generate the PDF shown in Figure 13c.  Figures 13a and b are colored to the same scheme as 

their counterparts in Figures 11 and 12. 
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Figure 12. a) shows modeled data for 100% CO2 (blue) and 100% brine (green) for Vs as a 

function of Vp/Vs.  b) shows the bivariate PDF generated from the 100% CO2 data points, 

and c) shows the bivariate PDF generated from the 100% brine data.  Color in b) and c)  

range from black and red (high probability density) to light yellow and white (low or zero 

probability density). 
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Figure 13. This figure is Vp as a function of Vp/Vs.  a) shows blue and green data representing 

100% CO2 and 100% brine, respectively.  b) and c) show the bivariate PDFs generated from 

the 100% CO2 and 100% brine data from panel a.  Black and red colors indicate high 

probability density.  Light yellow and white indicate low probability density. 

 

Results from classifying the intermediate fluid compositions generated lower success rates 

than did classifying of the end members, as expected.  Table 3 shows the results of mapping 

intermediate fluid compositions against brine and against measured log data.  In Table 3 the six 

columns of data represent the results of plotting 25, 50 and 75 % CO2 concentrations against 

measured data (columns 2 through 4) and against 100% brine (columns 5 through 7).  Fluid 

moduli were calculated as a lower bound in Table 3.   

 
Cross Plot 25/log 50/log 75/log 25/0 50/0 75/0 

Vp/Vs to Ip .478/.732 .617/.683 .664/.577 .593/.688 .693/.602 .735/.495 

Vp/Vs to Vs .550/.835 .628/.727 .627/.672 .519/.857 .675/.761 .698/.597 

Vp/Vs to Vp .576/.815 .641/.704 .638/.652 .671/.713 .705/.692 .733/.645 

 

Table 3. The intermediate fluid concentrations mapped to their respective PDFs for the three 

best performing cross plots from Table 2.  Fluid properties were calculated from the Reuss 

average. 

 

Table 4 shows the same data as Table 3 except that the fluid parameters were calculated with 

the upper bound.  The results showed that there was, in general, an increase in the success rate 

with an increase in percent CO2 for both methods of generating fluid moduli.  When using the 

Reuss, average only slight increases occurred in success rates with increases in CO2 percentage.  
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However, success rates of data derived from the Voigt bounds displayed a larger increase in 

success rate with increasing % CO2 compared to the respective class calculated with the Reuss 

bound.  The highest success rate for either fluid modeling method occurred for Vp against Vp/Vs 

ratio, with Vs against Vp/Vs showing a similar but slightly reduced success rate as compared to 

plotting Vp to Vp/Vs. 
 

Cross Plot 25/log 50/log 75/log 25/0 50/0 75/0 

Vp/Vs to Ip .322/.577 .440/.642 .522/.672 .505/.447 .621/.514 .636/.611 

Vs to Vp/Vs .459/.537 .458/.606 .492/.811 .385/.692 .631/.878 .549/.833 

Vp to Vp/Vs .385/.611 .445/.630 .496/.748 .491/.487 .626/.624 .646/.684 

 

Table 4. The intermediate fluid concentrations mapped to their respective histograms for the 

three best performing cross plots from Table 2.  Fluid properties were calculated from the 

Voigt average. 

 

DISCUSSION 

 

Fluid composition and the mixing of fluid moduli play an important role in the velocity 

modeling.  If the fluids are mixed using a patchy saturation model, there is a linear trend in Vp 

with changes in CO2 saturation.  When the fluids are mixed uniformly, as is represented by the 

Reuss bound, it is evident (Figure 6b) that little variation in velocity exists among concentrations 

of CO2 of 25 to 100 %.  However, there is a substantial change in velocity between 100% brine 

and 25 % CO2.  This supports previous work that indicates that velocities are dependent on fluid 

saturations and on the way those fluids are distributed within the pore space (Mavko and 

Mukerji, 1998).  This phenomenon is similar to the commonly recognized fizz-water problem, 

where a small amount of gas corresponds to a large decrease in velocity, but additional increases 

in gas saturation minimally decrease velocity.   The consistency between the modeled Vs values 

is easily understood because only density affects Vs (Figure 6c).  Bulk density changes linearly 

with changes in CO2 percent because it is calculated from a weighted average of fluid 

components and rock frame minerals.   

 

The upscaled log data, as expected, shows a smoothed version of the high-frequency log 

data.  Wavelength is a function of frequency and velocity.  Because Vs is less than Vp in a given 

medium, the smoothing affects of upscaling Vs data will not be as pronounced for a given 

frequency as those for Vp data.  This indicates that Vs data has the potential to provide a higher 

resolution data set at low frequencies than does Vp data.  

 

A lack of variation in the AVA modeling is evident in the results.  All panels of Figure 8 and 

Figure 9 show very similar reflection coefficients at all angles regardless of fluid composition or 

fluid mixing.  Additionally, there is a clear lack of discrimination among the data sets presented 

in Figure 10.  The three different fluid classes plot nearly atop one another with little if any 

discrimination amongst them. 

 

The lack of variation in the AVA response can be explained by realizing that the stiff rock 

frame of the sand, due to the cement, is independent of any AVA effects.  The stiff frame 

restricts the sensitivity of the rock elastic properties to fluid changes (Castagna and Backus, 

1993).  Given the stiffness and high velocities associated with the reservoir material in this study, 

it is expected that there will be only a small amount of variation in the AVA response with a 
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change in fluid composition.  Additionally, the larger the contrast in the rock properties across an 

interface, the smaller the affect the fluid will have on the reflection coefficient (Stine, 2004).  

Due to the internal stiffness of the sand, neither the Ip nor the Is of the reservoir change 

significantly with changes in fluid composition.  AVA affects are a function of Ip and Is across 

the reservoir/shale interface.  At zero angle the large contrast in Ip gives a reflection coefficient 

with a large magnitude (negative intercepts in Figures 8 and 9).  However, as the angle of 

incidence increased, the reflection coefficient becomes primarily a function of Is and density.  

Because Is and density do not change significantly with a change in fluid content, it is difficult to 

attribute changes in AVA effects to fluid variations. 

 

Results from the classification scheme showed a relatively high success rate when using 

combinations of Vp/Vs-Vp, Vp/Vs-Vs and Vp/Vs-Ip.  Each combination contains Vp/Vs.  These 

occurrences indicate that Vp/Vs can be important and useful for characterizing and monitoring 

injected CO2.  With the method used in this study, if the probability was zero in both classes, 

data was not mapped to either class.  However, due to the coarse bin spacing that was used in 

this study, areas where the density of data was relatively low had the potential to indicate a 

probability density of zero.  Additionally these results show that the larger the difference in 

elastic parameters among the pore fluid the higher the detection rate will be. 

 

When examining the scatter plots of the data and the bivariate PDFs, sharp edges are present 

along the boundaries of the PDFs between a high probability and zero probability.  This is an 

artifact of the binning when computing the PDFs.  It has the potential to have a small negative 

impact on successfully mapping data sets back to their respective classes.  Figure 14a shows the 

PDF for 100% CO2 pore fluid, and Figure 14b shows the PDF for 100% brine pore fluid.  Black 

points in both panels are the data corresponding to the PDFs.  Because of the binning procedure, 

some data points fall off the edge of their respective PDFs. During the mapping routine, these 

data points were not mapped to either histogram.  One way to minimize this affect in future 

studies would be to simulate statistically equivalent data points to increase the total number of 

data points used to compute the PDF.  This could help to extend the range of the PDF and 

smooth the edges to avoid the juxtaposition of high and low probability density regions. 
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Figure 14.  Modeled data plotted atop its correspondng bivariate PDF.  Panel a shows 100% CO2 

data and panel b shows 100% brine data.  Red and black colors in these panels represent 

high probability density, whereas light yellow and white represent low probability density.  

These plots illustrate that there are some are, especially at the left of the PDFs, where a 

relatively high density of data points plot into a zero probability region.   

 

 

When using Vs in the classification of the data for 0 and 50% CO2, a lower success rate 

occurs relative to mapping 0 and 25% CO2.  This is counter-intuitive because convention 

indicates that the more dissimilar the fluid composition is, the higher the ability to correctly map 

the data.  This anomaly can be explained by looking at the movement of the histograms when 

increasing CO2 from 25 to 50 % as can be seen in Figure 15.  In Figure 15 the blue contour plot 

is 50 % CO2, the red contour plot is 25 % CO2 and the green contour plot is 100% brine.  When 

fluid properties are calculated by the Voigt average, as in Figure 15, change in Vp is negative 

whereas the change in Vs is positive for a given change in fluid composition.  Because of this, 

the histograms in this situation shift laterally along the x-axis showing predominantly a change in 

Vs only.  This causes the highest probability region of the 50% CO2 class (blue) to overlie the 

100% brine (green) class such that mapping to the 25% CO2 class (red) is negatively affected.  

This could also be mitigated by statistically extending the data sets. 
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Figure 15.  Probability contours for 50, 25% CO2, and 100% brine saturations in blue, red and 

green, respectively.  This illustrates the lateral shift in Vs that can happen with even a small 

change in fluid properties when the fluid moduli are calculated using the Voigt bound.  The 

result is a lower classification success rate for intermediate CO2 concentrations. 
 

 

CONCLUSIONS 

 

This study showed that AVA may not be reliable when examining fluid substitution in a 

reservoir that is very stiff or when there is a strong contrast in impedance across an interface.  

When looking at a shale-sandstone interface with a large impedance contrast, the reflection 

coefficient will not show significant changes with respect to changes in fluid composition.  

Because the changes in fluid composition do not significantly alter either the shear impedance or 

the density of the rock, the angle-dependent reflection coefficients will not show much 

variability with changes in fluid. The combination of these two factors work to minimize the 

change in AVA due to a change in fluid composition. 

 

This study indicates that the way fluids are mixed can have a significant impact on the fluid 

properties and the overall rock properties.  When mixing a liquid and a gas using the Reuss 

bound versus the Voigt bound, the change in moduli with respect to gas saturation is less 

apparent with higher gas concentrations than it is with lower gas concentrations.  However, 

because fluid has no affect on shear moduli, when looking at the calculated Vs for a fluid-

saturated rock, there is no change in the velocity regardless of which method is used to calculate 

the fluid parameters.  Accordingly cross plots of Vp as a function of Vp/Vs and Vs as a function 

of Vp/Vs provide the best ability to discriminate between variations in fluid composition in a 

stiff rock frame.  This is because Vp/Vs is density independent.  According to Gassmanns 

equations the shear modulus of the rock is independent of the fluid.  Therefore Vp/Vs also 

minimizes the influence of shear modulus.  Because of this, changes in Vp/Vs from one pore 

fluid to another result from changes in the bulk modulus of the saturated rock.  Although Vp/Vs 

cannot be used as a direct indicator of fluid composition, cross plots generated with it are useful 
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for comparing modeled fluid substitution data to measured data.  From these crossplots, PDFs 

can be generated to assess the change and the uncertainty in that change for time-lapse studies. 

 
REFERENCES: 

 
Archie, G.E., 1942.  The elextrical resistivity log as an aid in determining some reservoir characteristics. 

Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, 146, 54-62 

Artola, F., Alvarado, V., 2006,  Sensitivity analysis of Gassmanss’s fluid substitution equations: Some implications 

in feasibility studies of time-lapse seismic reservoir monitoring, Journal of Applied Geophysics, 59, 47-52. 

Avseth, P., Mukerjo, T., Mavko, G., 2010. Quantitative Seismic Interpetation, New York: Cambridge University 

Press.  

Avseth, P., Skeji, Norunn., 2011, Rock physics modeling of static and dynamic reservoir properties – a heuristic 

approach for cemented sandstone reservoirs, The Leading Edge, 30, 90-96. 

Backus, G.E., 1962, Long-Wave elastic anisotropy produced by horizontal layering,  Journal of Geophysical 

Research., 68, 4427-4440. 

Biot, M.A., 1956, Theory of propagation of elastic wavers ina  fluid saturated porous solid. I. Low-frequency range, 

Journal of the Acoustical Society of America, 28, 168-178. 

Bosch M., Cara, L., Rodrigues, J., Navarro, A., Diaz, M., 2007, A Monte Carlo approach to the joint estimation of 

reservoir and elastic parameters from seismic amplitudes, Geophysics, 72, O29-O39. 

Bosch, M., Carvajal,  C., Rodrigues, J., Torres, A., Aldana, M., Sierra, J., 2009, Petrophysical seismic inversion 

conditioned to well-log data: Methods and application to a gas reservoir, Geophysics, 74, O1-O15. 

Castagna, J P. and Backus, M., 1993, Offset Dependent Reflectivity—Theory and Practice of AVO Analysis, 

Society of Exploration Geophysics. 

Castagna, J. P., and Swan, H.W., and Foster,D. J., 1998, Framework for AVO gradient and intercept interpretation, 

Geophysics, 63, 948–956. 

Chadwick, A., Williams, G., Delepine, N., Clochard, V., Labat, K., Sturton, S., Buddensiek, M., Dillen, M., Nickel, 

M., Lima, A., Arts, R., Neele, F., and Rossi, G., 2010, Quantitative analysis of time-lapse seismic monitoring 

data at the Sleipner CO2 storage operation, The Leading Edge, 29, 170-177. 

Cheng, A., Huang, L., and Rutledge, J., 2010, Time-Lapse VSP data processing for monitoring CO2 injection, The 

Leading Edge, 29, 196-199. 

Das, A., and Batzle, M., 2008, Modeling studies of heavy oil-in between solid and fluid properties, The Leading 

Edge, 27, 1116-1123. 

Dvorkin, J., Mavko, G., and Nur, A., 1991, The effects of cementation on the elastic properties of granular material, 

Mechanics of Materials, 12, 207-217. 

Dvorkin, J., Nur, A., and Yin, H., 1994, Effective properties of cemented granular material, Mechanics of Materials, 

18, 351-366. 

Dvorkin, J. and Nur A., 1996, Elasticity of High-porosity sandstones: Theory for two North Sea datasets, 

Geophysics, 61, 1363-1370. 

Gassmann, F., 1951, Uber die elastizitat poroser medien, Vier. Natur Gesellschaft, 96, 1-23. 

Ghaderi, A., and Landro, M., 2009, Estimation of thickness and velocity changes of injected carbon dioxide layers 

from prestack time-lapse seismic data, Geophysics, 74, O17-O28 

Hashin, Z., and Shtikman, S., 1963, A Variational approach to the elastic behavior of multiphase materials, Journal 

of the Mechanics and Physics of Solids, 11, 127-140 

Knight, R., and Nolen-Hoeksema, R., 1990, A laboratory study of dependence of elastic wave velocities on pore 

scale fluid distributions, Geophysical Research Letters, 17, 1529-1532. 

Knott, C. G., 1899. Reflection and refraction of elastic waves, with seismological applications. Philosophical 

Magazine., London, 48, 567-569. 

Kordi, M., Hovorka, S., Milliken, K., Treviño, R., and Lu, J., 2010, Diagenesis and reservoir heterogeneity in the 

Lower Tuscaloosa Formation at Cranfield Field, Mississippi: presented at the 60th Annual Convention of the 

Gulf Coast Association of 96 Geological Societies and the Gulf Coast Section of SEPM, San Antonio, Texas, 

October 10-12, 2010. GCCC Digital Publication Series #10-13. 

Lu, J., Kharaka, Y., Thordsen, J., Horita, J., Karamalidis, A., Griffith, C., Hakala, A., Ambats, G., Cole, D., Phelps, 

Manning, M., T., Cook, P., and Hovorka, S., 2012, CO2–rock–brine interactions in Lower Tuscaloosa 

Formation at Cranfield CO2 sequestration site, Mississippi, U.S.A., Chemical Geology, 291, 269-277. 

Lumley, D., 2010, 4D seismic monitoring of CO2 sequestration, The Leading Edge, 29, 150-155. 



Sensitivity of elastic properties to CO2 

 23 

Mavko, G., Mukerji, T., 1998. Bounds on low-frequency seismic velocities in partially saturated rocks. Geophysics. 

63, 918– 924. 

Morency, C., Lou, Y., Tromp, J., 2011, Acoustic, elastic and poroelastic simulations of CO2 sequestration crosswell 

monitoring based on spectra-element and adjoint methods, Geophysical Journal International, 185, 955-966. 

Mukerji, T., Jorstad, A., Avseth, P., Mavko, G., Granil, J. R., 2001, Mapping lithofacies and pore-fluid probabilities 

in a North Sea reservoir: Seismic inversion and statistical rock physics, Geophysics, 66, P988-P1001. 

Reuss, A., 1929. Berechnung der Fleissgrenzen von Mischkristallen auf Grund der Plastizitatsbedingung fur 

Einkristalle, Zeitschrift fur Angewandte Mathematik aus Mechanik, 9, 49-58. 

Russell, B. H., Heldin, K., Hilterman, F. J., Lawrence, R. L., 2003, Tutorial: Fluid-property discrimination with 

AVO: A Biot-Gassmann perspective, Geophysics, 68, P29-P39. 

Rutherford, S. R., and Williams, R., H., 1989, Amplitude-versus-offset variations in gas sands. Geophysics, 54, 680-

688. 

Simm, R., White, R., Uden, R., 2000, The anatomy of AVO crossplots, The Leading Edge, 19,150-155. 

Span, R., and Wagoner, W., 2004, A new equation of state for carbon dioxide covering the fluid region from the 

triple-point temperature to 1100 K at Pressures up to 800 MPa. Journal of Physical Chemical Reference Data, 

25, No. 6, 1509-1596. 

Stine, J.A., 2004, Sensitivity of AVO reflectivity to fluid properties in porous media. Unpublished Masters Thesis, 

The University of Texas at Ausin. 

Voigt, W., 1907. Bestimmung der Elastizitatskonstanten von Eisenglanz. Anallen der Physik, 24, 129-140. 

Zoeppritz, K., 1919, ErdbebenwellenVIIIB, Ueber Reflection and Durchgang seismischer Wellen durch 

Unitestigkeitsflaechen. Goettinger Nachrichten, I, 66-84.  

 


