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Motivation

The Haynesville Shale have penny-shaped pores
(Low aspect ratio)(Curtis et al., 2010).

The pore shape of the formation @

- closely related to pore stiffness =~ Aspectratio=ci
and rock stiffness pp——

Purpose of modeling :

- determine pore aspect
ratios by comparing
the modeled velocities
to the upscaled
velocities (P-wave)
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1. Introduction

USA gas shale plays
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L
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(Horne et al., 2012) ]ACKSON
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- Located in northwest
Louisiana and East Texas

- Lying approximately
10,000 to 13,000 feet sub-surface

Haynesville Shale : ..
Drilling Activity - A rock formation containing

oil and gas and an important
shale-gas resource play

- Total reserves : 100 Tcf

- Production : about 2 Bct/d
(Hammes et al. 2011)
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Seguence Stratlgraphy
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A Micro-structural Image

e Y
R
2R

Nano-scale image

- Dark is organic material (solid)
~ 1nside pore.

- Light gray 1s matrix or grain.

- Most pore shapes are flat
(crack-like) : (low aspect ratio).

- Variable grain shapes

THE UNIVERSITY OF TEXAS AT AUSTIN

SCHOOL OF GEOSCIENCES



SEM image

On the middle right (O)

- Numerous nano-scale pores and
one pm-scale pore including
organic material .

At the lower left (ip)
- Inter-crystalline pores between
pyrite framboid crystals.

In the top center (M)
- Moldic pores between organic
matter and mineral grain.

(Hammes et al., 2011)
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Well Log Data

Well Log for the Data
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2. Theory

1)Effective media theory - Backus Average

A : the wavelength, d : the layer thickness

When A / d >>1, the wave velocity 1s given by an average of the
individual layers (Backus, 1962).

For normal incidence propagation

Viur = Meyt/Pond™ (V. o7 - Backus average velocity)
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Backus Average(Vp, Vs)

Vp and Moving Backus average

Vs and Moving Backus average
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2) Self-Consistent Model

Schematic diagram of the self-consistent model

‘ Pore inclusions
‘ i Mineral grain inclusions
A rock

Infinite background matrix

(Jiang and Spikes, 2011)

The elastic moduli of the rock depend on the elastic properties of the
grain inclusions and pore inclusions.
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Berryman (1980b, 1995) gives a general form of the self-consistent
approximations for N-phase composites:

(Mavko et al., 2009)

Where i : i material, x; : its volume fraction, P and Q : geometric factors.
K*¢-and u*,. . self-consistent effective moduli.

Advantages

Not limited to specific compositions and are able to model multiple
mineralogical phases, as well as their shapes
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Self-consistent modeling results

Self-consistent model and Vp Data - COLOR : GR(API)
4.5 .

Self-consistent model and Vs Data - COLOR : GR(API)
2.8

—SCM Yp
Data

— O Ve
Data

et
o

b
>

Vp (km{s)

N

@

£

<

)

3 >

L JA

0.05 0.1 0.15 0.2 . ' 0.05 0.1 0.15
Density Porosity (%)

Density Porosity (%)

0.2 0.25 ‘

Aspect ratio: N(0.145,0.012)

Average composition (XRD) s vavesimsor s s
JACKSON

SCHOOL OF GEOSCIENCES




3) Gassmann fluid substitution

Gassmann fluid substitution allows us to obtain the bulk and
shear moduli of the fluid-saturated rock from the dry rock
mineral moduli, porosity, and fluid moduli.

Gassmann (1951) provided this general relation between the
dry rock and saturated-rock moduli.

K2 /Kimin —KI2 — K2 /p(Admin—K1f12 ) = K1 /Kimin—AI1
— KL Jp(Kimin—K1f01)

Kisat /Kimin—Klsat = Kldry /Kimin—Kldry + Kifluid /p(Kimin —
Kfluid) |, 1/ulsat =1/ uldry

THE UNIVERSITY OF TEXAS AT AUSTIN

SCHOOL OF GEOSCIENCES



4) Partial saturation

hysteresis effect

Spirkt River Sandstone Elastic velocities can be significantly

v_Drainage affected by the pore-scale mixing of

Dralnage o Of .
Imbibition e fluids.

Imblbltlon
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(Berryman et al., 1999)

Patchy saturation is always higher velocities than Uniform saturation.
(Mavko and Mukerji, 1998)
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5) Closing stress

The closing stress of the pores (Mavko et al., 2009).

aglclose =3m(1-2v10) /4(1—vJ0 12 ) Bargson’ s ratio of the matrix
K, . bulk modulus of the matrix

a . pore aspect ratio

Pore closing stress versus pore aspect ratio
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3. Modeling methodology (20Hz, 50 Hz)

P i s ————— e ———————————

i Input(1l) : composition data i i Well log data E
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Composition data
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4. Results of velocity modeling

1) Pore aspect ratios for fixed fluid properties
2) Effect of fluid property changes to velocities

3) Pore aspect ratios for various fluid properties
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1) Pore aspect ratios for fixed fluid properties
- XRD data (Fluid properties - K:1 GPa, p: 0.8 g/cc )

20Hz, XRD data
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- Interpolated data (Fluid properties - K:1 GPa, p: 0.8 g/cc )

20Hz, Interpolated data

0O 02 0.4 ' 10 15 3 3.2 3.4
Aspect ratio Miu(SCM) Vp(SCM)

50Hz, Interpolated data

50 Hz 5 o250

63001

0O 0.2 0.4 10 15 20 5 10 15 3 3.5 4
Aspect ratio K(SCM) Miu(SCM) Vp(SCM)

Asp 0_035 —_— 0_298(Mean 0. 43()(—[00LOFGEOSCIENCES




2) Effect of fluid property changes to velocities

(Well-log data for porosity, S,,, Vijite)

Data for whole depth range Data for depth range(the Haynesville Shale)
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1) Patchy saturation and uniform saturation

Bulk modulus of pore fluid Density of pore fluid
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2) Cases to be considered

The effect of pore fluid properties were analyzed
by comparing calculated Vp.

« self-consistent model
- dry pores
- patchy saturation
- uniform saturation cases

« Gassmann fluid substitution
- patchy saturation
- uniform saturation cases
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3) Velocity comparison (P-wave)

Vp by SC model and Gassmann substitution
5100 T T ~ y ! :
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3) Pore aspect ratios for various
fluid properties

The effect of pore fluid properties to determine
pore aspect ratios by velocity modeling were
analyzed.

« self-consistent model
- dry pores
- patchy saturation
- uniform saturation cases

« Gassmann fluid substitution
- patchy saturation
- uniform saturation cases
JACKSON 7
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1) Comparison of results for SCM

Pore aspect ratio (50 Hz, XRD) Pore aspect ratio (50 Hz, Interpolation)
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Difference b/w aspect ratio and V,, from SCM

Aspect ratio P-wave velocity

Pore aspect ratio (50 Hz, XRD) Vp (50 Hz) by SC model

= Dry pore
: Patchy saturation
Uniform saturation

= Dry pore
Patchy saturation
_— : . Uniform saturation
0.2 : 5 : 3 35 4
Pore aspect ratio Vp (km/s)
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Relation b/w aspect ratio and V, calculation from SCM

Difference < 0.5%
Vv

p_scm - Vp_ BA

i Input(1) : composition data i i Well log data ‘ i
i Input(2) : fluid property i i :
: | ’ - Upscaling : :
i | Estimate : a(aspect ratio) L] :
= B i
g i Output- L :
o+ i V, sem - P Qutput ! :
O i Uniform kathiratjon ( Vp_ga V. :

SClanllalcR V, ., for Patchy > V, ., for Uniform & Dry pores

Asp for Patchy < Asp for Uniform & Dry pores
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Relation b/w aspect ratio and V, calculation from SCM

Aspect ratio P-wave velocity

by SC model

Pore aspect ratio (50 Hz, XRD) )

| ==—Dry pore
Patchy saturation
o === Uniform saturation

Vp or Bulk moduli increase
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2) Comparison of results for Gassmann

Pore aspect ratio : Gassmann (50 Hz, XRD) Pore aspect ratio : Gassmann (50 Hz, Interpoation)
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3) Comparison between SCM and Gassmann

Patchy(SCM) < Patchy(Gass) < Dry pores < Uniform(SCM)< Uniform

Pore aspect ratio (50 Hz, XRD) Pore aspect ratio (50 Hz, Interpoation)
' : — : : ; : : . : ' :

s : '.‘ 2 B : 3 : = ;
0O 005 01 015 02 025 03 035 04 0O 005 01 015 02
Pore aspect ratio Pore aspect ratio

Determined aspect ratios are strongly affected by the pore fluid mixing.

Mixing saturation in the Haynesville would be patchy saturation case.
(air/water interface) Pore aspect ratio : 0.035 - 0.296 (Mean : 0.145)
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7. Conclusion

« Determining pore aspect ratios
. reservoir characteristics at the seismic scale.

* V, and S,, in water/gas reservoir
: heterogeneous (patchy) or homogeneous
(unifemm).
Pore aspect ratio determination

« Fluid mixing types affect differently the calculations
for pore aspect ratios and P-wave velocities.

« Help to find optimal locations for fracturing for the
shale gas production.
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Appendix
Q-Q plot for 50 Hz : Comparing two distributions

Aspect ratios Vp diffrences Vs differences
l_u: Estimated ASP (50 Hz) Vp differences (50Hz) Vs differences (50Hz)
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Velocity comparison (S-wave) by SCM

VWs by SC model and Gassmann substitution
5100 T T T :
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