

Investigation of Anisotropy in the Woodford Shale

AVAZ and Rock Physics Modeling in the Anadarko Basin, OK

Alexander Lamb

THE UNIVERSITY OF TEXAS AT AUSTIN ACKSON SCHOOL OF GEOSCIENCES

Outline

- Background
- Well Log Observations
- Seismic Data Observations
- Rock Physics Modeling
- Synthetic Seismic Data
- Results / Conclusions

Background

- Woodford Shale Formation
- Anadarko Basin
- Canadian County, OK

Background

Woodford Shale
"Black" shale
Late Devonian / Early Mississippian
~13,000 ft. deep
~250 ft. thick

Mississippian Limestone above
Hunton Limestone below

Well Log Data

Anisotropy HTI

VTI

SCHOOL OF GEOSCIENCES

Well Log Data – VTI?

Well Log Data

Well Log Observations indicate VTI

Considerations
 Higher frequency of log data (2-10kHz)
 Limited resolution

What does seismic data tell us?

Seismic Data - AVAZ
 Amplitude varying with azimuth

 Does AVO response change as a function of azimuth?

Necessary to use pre-stack data

• Key indicator of HTI

Seismic Data - Workflow

- Tie well log to seismic data
- Interpret Woodford horizon
- Gather seismic data by azimuth (10 degree sections)
- Convert from offset gathers to angle gathers
- Calculate AVO gradient (B) as a function of azimuth

Seismic Data - Workflow

Gather Seismic Data into Azimuthal (10 degree) sections

Convert offset gathers into angle gathers (from Hampson-Russell)

Quantifying AVO

• RC (θ) = A + B sin² θ

Quantifying AVO

• RC (θ) = A + B sin² θ

Interpret B as a function of azimuth

AVO Gradient as a Function of Azimuth

SCHOOL OF GEOSCIENCES

• Graph results of B on polar plot • Fit ellipse to data • Minor axis points to orientation Minor/major axis ratio indicates fracture density

• Graph results of B on polar plot • Fit ellipse to data • Minor axis points to orientation Minor/major axis ratio indicates fracture density

180

Seismic Data

Seismic Observations indicate HTI

 Longer wavelengths 'sample' more rock, better for volumetric properties

Relative fracture density from AVAZ

Quantify fracture density?

Rock Physics - Workflow

 Composite Estimate Created from well log data Hashin-Shtrikman-Walpole Bounds Introduce Porosity Hudson Cracked Media Model Introduce fractures Brown and Karringa Fluid Saturation Add fluids

Rock Physics - Composition

SCHOOL OF GEOSCIENCES

Rock Physics

Rock Physics

Introduced Φ K_{1}, μ_{1}

Hudson Model

Introduced cracks C_{ii}^{dry}

- Porous media inserted into Hudson Cracked Media Model
- Specific crack density and aspect ratio used
- Crack density governed by $\epsilon = \frac{3\phi^{crack}}{4\pi\alpha}$

Stiffness tensor C_{ii}^{dry} returned

Rock Physics

Introduced cracks C_{ij}^{dry}

BK Fluid Saturation

Introduced fluid C_{ii}

 Cracked model inserted into Brown and Karringa fluid saturation method

- Fluid determined by water/gas mixture governed by S_w log
- Stiffness tensor C_{ii} returned

Rock Physics - Recap Composite Estimate Created from well log data Hashin-Shtrikman-Walpole Bounds Introduce Porosity Hudson Cracked Media Model Introduce fractures Brown and Karringa Fluid Saturation Add fluids • Result: C_{ii}

SCHOOL OF GEOSCIENCES

Synthetic Seismic Data

From rock physics model: C_{ii}

 ANIVEC software generates synthetics

 In progress: Perform AVAZ on synthetics to determine relationship between ellipticity and crack density

Results / Conclusions

- Well log data indicates VTI
- Seismic data indicates HTI
- Preliminary AVAZ results from seismic data show a SW/NE orientation

 Rock physics model based on well log data generates full stiffness tensor usable for synthetics

Future Work

 Establish quantified relationship between crack density and ellipticity

 Regional map of fracture orientation from AVAZ methods on seismic data

Quantify effect of varying lithology

Special Thanks to our Sponsors

Thanks for listening!

