

Understanding fracture orientation by removing polarization distortion for direct shear waves

Terence Campbell (Ph.D. Candidate, 2012) Supervisor: Robert Tatham

SCHOOL OF GEOSCIENCES

The problem

THE PROBLEM

In general, a polarized shear wave undergoes significant distortion of that polarization upon reflection regardless of the symmetry of the propagating media (even in purely isotropic media).

THE CONSEQUENCES

This distortion complicates analysis of the reflection data for extracting medium properties from polarization information

Talk Outline

S waves Polarization distortion Addressing the problem Previous work Reflection polarization vs. incidence angle Real Data > Future Work Questions

Polarization distortion isotropic media

Isotropic model

P wave Velocity – 3.0 km/sec S wave velocity - 1.5 km/sec Density - 2.0 g/cc

P wave Velocity – 4.0 km/sec S wave velocity - 2.0 km/sec Density - 2.2 g/cc

Rss vs Incidence Angle

Approximations to simplify Zoeppritz equations

- The coefficient of the second term is that combination of elastic properties which can be determined by analyzing the offset dependence of event amplitude in conventional multichannel reflection data
- Assumes small contrasts in density and velocity

Comparing Zoeppritz equation to the two term linear approximation

Comparing the full Zoeppritz equations to a two term sin² approximation, describing *SV* motion (Spratt, 1993)

Comparing Zoeppritz equation to Spratt's and Lyons linear approximation

Comparing the full Zoeppritz equations to a two term Sin^2 approximation, describing *SH* motion. There is poor agreement between the two approximations

Comparing the full Zoeppritz equations to a two term tan^2 approximation, describing *SH* motion. There is excellent agreement between the two through an incident angle of 50 (Lyons, 2006)

Approximation to simplify Zoeppritz equations

- Calculate a gradient value for Spratt's approximation correct SV AVO with [A + B sin²(Θ)] form
- Assume zero crossing at 20 deg A=1, to leave normal incidence unchanged therefore:
- $[1 + B \sin^2(20)] = 0; B_{sv} = -8.5486$
- Calculate a gradient value for Lyons's approximation correct SH AVO with [A + B tan²(Θ)] form
- Assume zero crossing at 40 deg A=1, to leave normal incidence unchanged therefore:
- $[1 + B \tan^2(40)] = 0; B_{sh} = -1.4203;$

Corrected reflection coefficient to minimize amplitude change

 $SS_{SVcorrected} = SS_{SV} * (1/(1+Bsv*sin^2\theta))$

 $SS_{SHcorrected} = SS_{SH} * (1/(1+B_{SH}*tan^2\theta))$

Singularity at 18-22 degrees

Singularity at 38-42 degrees

Theoretical Survey Design

Source

Source Polarization

Orientation

SCHOOL OF GEOSCIENCES

Polarization plot (3D survey)


```
L = \arctan [\cos(\Theta - \Psi)SV/\sin(\Theta - \Psi)SH] + (\Theta - 90)
```

 $L = \arctan \left[\cos(\Theta - \Psi) Sv_{corrected} / \sin(\Theta - \Psi) SH_{corrected} \right] + (\Theta - 90)$

Polarization plot (3D survey)

Source polarized 30^o North of East

Sensitivity Analysis

- Sensitivity analysis performed to understand changes in SV and SH reflection coefficients with changes in Density and S-wave velocity
- SH reflection coefficient changes but they are insensitive to changes in incidence angles
- SV reflection coefficient is very sensitive to changes in density and incidence angles
- Zero crossing for SV and SH are relatively constant to changes in shear wave velocity

Diagram of Polarization distortion in Isotropic / HTI media

SCHOOL OF GEOSCIENCES

Diagram of Isotropic - HTI model

P wave Velocity – 3.0 km/sec S wave velocity - 1.5 km/sec Density - 2.0 g/cc

Vp(0)=4.0km/sec Vs(0)=2.0km/sec ϵ =0.50 δ =0.10 γ =0.02 Fracture Strike=East ρ =2.2g/cc Use Ruger's 1996 equations for Isotropic /HTI medium to determine zero crossing for sources parallel and normal to fractures

Polarization plot (3D survey) fractures parallel to source

Polarization plot (3D survey) fractures 30° to source

Polarization plot (3D survey) fractures parallel to source

Gamma = 10%

THE UNIVERSITY OF TEXAS AT AUSTIN JACKSON SCHOOL OF GEOSCIENCES

Isotropic - HTI model Analysis

- Gamma larger than 10% uncorrected data properly defines the orientation
- Gamma > 2%, regardless of the source orientation, corrected polarization are all properly oriented
- Gamma < 1%, observed and corrected polarizations have no real differences from the simple isotropic/isotropic case; shear wave splitting seems to not occur

Black-Bear Creek Oklahoma,

DALHART

Stephens

Jefferson

Data Courtesy Exploration Geophysics Laboratory (EGL)

Oklahoma

Garvin Pauls Valley

Garvin

● ^{Br}Brady VSP well^{ay}

Carter

Googleearth

22

Analysis of 3D 9C Seismic Data Set (Blackbear field) • 3D 9C Data set

Stephens County Oklahoma

Sycamore fracturing (Carbonates)

Acquisition 1998

Zones of interest Sycamore and Hunton Carbonates

- Silurian Hunton Group rocks, generally limestone and dolomite,
- Depths 5,000 13,000 ft
- Productivity of this play are its proximity to a major hydrocarbon source--the overlying Woodford Shale--and its widespread reservoir and trap development

Fold Maps of S-wave Inline & Crossline Source

BlackBear S-wave and P-wave Seismic Line

BlackBear S-wave and P-wave Seismic Line

BlackBear S-wave and P-wave Seismic Line

SCHOOL OF GEOSCIENCES

Previous Well Data showing HTI Anisotropy

SCHOOL OF GEOSCIENCES

- The VSP indicate three changes in the orientation of azimuthal anisotropy eastnortheast, east-southeast, and north-south orientations
- Synchronous rotation (SR) from angles of 0^o to 180° at one degree increments
- Dashed curve is the result of applying SR at each depth level, and the solid curve is the result of applying downward continuation plus SR

Prestack Data used to correct for Polarization Distortion

TWT (msec)	< ─	Offset (ft)	\rightarrow	TWT (msec)	~	Offset (ft)		
CDP 1864 1866 1868 1870 1871 Offset (ft) 8433 7995 7233	1872 1873 1874 1875 1876 1877 1 6645 6071 5516 4988 4494 4074 3	878 1879 1880 1881 1882 1883 1884 1866 3372 3190 3138 3146 3263 3506	1885 1886 1887 1888 1889 18 3848 4263 4736 5248 5792 63 7	890 18: 1865 1867 1869 1870 1871 18 375 69:t (ft) 8433 7995 7233 66	72 1873 1874 1875 1876 1877 1878 1 45 6071 5516 4988 4494 4074 3666 3	179 1880 1881 1882 1883 1884 1 372 3190 3138 3146 3263 3506 1 1////////////////////////////////////	885 1886 1887 1888 1889 18 3848 4263 4736 5248 5792 63	90 875
Shot	2479			800				
II								••••
900		Y		900		?? ?		
1000	······································	?"	\$\$ \$\$ \$\$}	1000 horiz		>>>> 6666 [[[] []] 5666 3000 5066 [] 507 [] 507 [] 507 [] 507 [] 507 [] 507 [] 507 [] 507 [] 507 [] 507 [] 507 [] 507 [] 507 [] 507 [] 507 []))
1100		(**)	<pre>{ ()'; (</pre>	1100		2555 (11)- (11)- (11)- (11)- (11)5 (55) 2535 (20)- (20)- (20)- (20)- (20)- (20)-	· () () · (/// · · · · · · · · · · · · · · · ·	
1200		\$ <u>}</u>) 	1200	()))))))))))))))))))))))))))))))))))))			
1300	1))) 2)), (1) 2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/))))))))))))))))))))))))))))))))))))))	1300	2))), <u>2)()</u> ()), 2)(), ()(), ()(), 2))	xxx ::::: :::: :::: :::: :::: ::::		
1400	} ! }/ ///////////////////////////////////	\$** xxx= xxx= xxx= xxx= xxx= xxX)		1777 (* 17. 17. (* 17.)) 1777 (* 17. 17. (* 17.))	<u> </u>		
)))) (11))))) (11) (11) (11) (11) (11) (11) (11))))) (11) (20) (20) (11) (11) (12) (2)			
1500		71 - 711 - 711 - 711 - 711 - 777 - 77		1500	(() ((())) ())) ()) (() (() ())			
1600	M (//? (((,)))) ////	\$}} 777\$ 7777 7777 7777 7777 7777 7777 	9 999) 2 1 ((((((((((((((((((1600	MAN (///	•••••••••••••••••••••••••••••••••••		#
1700	\{{ _})}	CDP: -1 Time (ms): 772	<u>}-} {/</u>		<u>++(+-)));-+/));-+/));-+/));-+/));-+</u>	<u>111)-1111-1111-1111-1111-1111</u>	<u>-}+{/-//////////////////////////////////</u>	17

THE UNIVERSITY OF TEXAS AT AUSTIN JACKSON SCHOOL OF GEOSCIENCES

Shot Gather Analysis for Black-bear field

098000	2100000	2102000	2104000	2106000	2108000	2110000	2112000	2114000	2098000	2100000	2102000	2104000	2106000	2108000	2110000	2112000	2114000	2116000
	4 1	1 E -	1 1			- A					1 - E - E	1 1		1	- A	1 1		
440000-				1 E -	11 月	1.1			440000-				e de la composición d	生化	1.1	1		
-	41 1		1 1	1	1 1	1.1	1.1		-		1.1	4 1		1 1	100	1 1		
	4					1.1	1.1				1.1	1 1			- E.	1 1		
438000-	4.1					- E.,	1.1		438000-		1.1	1 1			÷ .	1.1		
						1.1	1 1				· · · · ·	4 - 3			11 (J. 1	11		
								1					· · · ·					
436000-									436000-									
							44.					4						
	1 1					1.1	1 1	1				4 4		4 1				
434000-		· · ·				· · · · .		••••	434000-		•••	+ +						
•••									•••••		1			9 1		1		
						· · · · ·							10		· · · · · · .			
432000-							4.		432000-	. /		1.1		1 1				
-	1 1								-									
•••]••							44.						1997 - Barris	4		1	1/2	
430000-						1.1			430000-		11	4, 4		1 1				
•••-•		· · · · //					1 1		• • • • •		• • • • • • • •	· • • • • •	••••	4				
						. E.			-		1	4 4			1 - E		- H. V	
428000-							4 1		428000-		•••••••••••••••••••••••••••••••••••••••	3 1		1 1	· · · •			
			🕅 // 📕		<i>#1111</i> 5		4							4 1		1		
	1 1						1 1					T (4 4	1	1	// WV	
426000-		· · · · · //////	////				+++++	· •	426000-			4 4	- 1	4 1				
-	4 8	· · · ////					4		-			4 4				.		
		1								•••••						1		
424000-			1 1		V V				424000-		- E	1.1						
									YOF	1.1.1				1 1				

Center of Survey Shot Correct and Uncorrected Plots

Next Steps

- Apply correction to HTI anisotropy which may be applicable to real data
- Develop a process to incorporate correction for land data in pre-processing phase
- Possible land seismic data improvements for fracture characterization

Conclusions

- Reflection process alters polarization of direct shear waves
- Anisotropic Analysis is important in Fracture characterization for reservoir architecture
- Potential extension to Alford Analysis to non-normal angles of incidence

Thank you

Questions

THE UNIVERSITY OF TEXAS AT AUSTIN

SCHOOL OF GEOSCIENCES

Special Thanks to our Sponsors

Blackbear Survey Parameters

- S-wave record length 6sec
- P-wave Sampling Rate 4ms
- S-wave Sampling Rate 8ms
- Station Lines 15
- Total Lines 2220
- Live Stations / Line 148
- Station Spacing 165 ft
- Station Line Spacing 1320 ft
- Shot Lines 21
- Total Shots 1197
- Fired Shots 1197

- Shot Spacing 330ft
- Shot Line Spacing 1155ft
- Maximum Channels 672
- Areal Extent 16.42 sq miles
- Bin Width 165 ft
- Bin Height 82.50 ft
- Maximum Offset 9912ft
- S-wave source Array 6-48 Hz 16sec sweep 8 sweeps

Sensitivity Analysis

V_p/V_s=1.8 Density variation +/- 25% V_p and V_s remains constant

> THE UNIVERSITY OF TEXAS AT AUSTIN JACKSON SCHOOL OF GEOSCIENCES

Sensitivity Analysis

Initial V_p/V_s =1.8, Density 2.2g/cc Shear wave velocity +/- 25% V_p and density remains constant

