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ABSTRACT 

 

Global optimization methods such as very fast simulated annealing (VFSA) 

and a multiple VFSA (MVFSA) inversion have been applied to seismic waveform 

inversion and uncertainty characterization respectively. Here we address some of 

the limitations of MVFSA by developing a new stochastic method, named greedy 

annealed importance sampling (GAIS). GAIS combines very fast simulated 

annealing (VFSA) and greedy importance sampling (GIS), which uses a greedy 

search in the important regions located by VFSA in order to attain fast 

convergence and provide unbiased estimation. We demonstrate the performance 

of GAIS with application to pre-stack seismic waveform inversion of angle stack 

traces. Initial models containing the fractal behavior as the well logs are used to 

gain high resolution estimates of reservoir elastic properties. The results indicate 

that GAIS can provide better estimation of both models and their uncertainties 

than using VFSA alone. A gas layer can be easily identified using GAIS. The new 

MC method demonstrated here could also be applied to reservoir characterization 

and reservoir monitoring for accurate uncertainty estimation.   

 

INTRODUCTION 

 

The goal of exploration geophysics is to simulate a log of rock properties as a function of 

two-way vertical travel time or depth. The most accurate and high resolution logs can be 

generated from well measurements, however, only in vertical direction. Highly heterogeneous 

spatial distribution of reservoir elastic properties is not resolvable by seismic data: this causes 

multiple models to fit the measurements. A deterministic inversion based on minimization of the 

error between the observation and forward modeling only offers one of the best fit models and is 

usually band-limited. A complete solution should include both models and their uncertainties, 

which requires drawing samples from the posterior distribution. To assess this problem, 

stochastic inversion of seismic data with well logs is fairly common.  

 

Conventional stochastic inversion methods based on Monte Carlo Markov Chain (MCMC) 

are either computationally intensive or provide biased estimation. The most common MCMC 

method is Metropolis-Hastings sampler (Metropolis and Ulam 1949, Hastings 1970), which 

generates random samples from a proposal distribution and rejects proposed moves based on 

Metropolis criterion. Although this method is proven to asymptotically converge to a stationary 

distribution, it is generally very slow. Very fast simulated annealing (VFSA) provides a fast 
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approximation of the expectation value. However, the uncertainty estimation by this method is 

biased because of continuous change of proposal distribution with iteration. 

 

Schuurmans and Southey (2000) presented Greedy Importance sampling (GIS), which is a 

simple variation of importance sampling and shows an improved inference quality than other 

stochastic inference methods. They applied GIS for conducting Monte Carlo inference in a 

graphical model and proved that the technique yields unbiased estimates.  

 

Based upon GIS, we further speed up the convergence of Monte Carlo inference by 

combining it with VFSA, which is named greedy annealed importance sampling (GAIS). 

MVFSA with models drawn from a prior distribution and with varying starting temperature are 

employed in order to locate the important regions of the model space which are further explored 

by GIS. GAIS is expected to provide an optimal balance between computational efficiency and 

accuracy of estimation. Furthermore, fractal initial model (Srivastava and Sen 2009, 2010) is 

applied to expand the frequency band of traditional seismic inversion results. The feasibility of 

GAIS  is tested using prestack seismic from Hampson Russell Strata demo data. 

 

METHODOLOGY 

 

Here we first review the Bayesian formulation of a geophysical inverse problem and then 

discuss how to draw samples from a multi-dimensional posterior probability density (PPD) in 

model space (Tarantola 1987, Sen and Stoffa 1995) using different stochastic inversion methods.  

 

Bayesian formulation 

 

In Bayesian framework, the degree of belief can be updated by evidence. Represented in 

mathematical form, the PPD is proportional to the product of the prior and the likelihood:  

                                         (1) 

                                                                                                                                                                                                                                                                             

                                                                                                                                                                                                                                       

where m  and obsd
 
represent model parameter and data vectors; )(mp is a priori probability 

density function (pdf), )( m|dobsp  is the likelihood function and )( obsd|mp  is the conditional 

pdf of  m  given the data d . Denominator )( obsdp
 
is pdf of observation, or marginal evidence. 

It is a constant and independent on m . Normally the likelihood function dominates the much 

larger subspaces of the model space than prior pdf. The choice of the likelihood functions 

depends on the noise distribution. Gaussian noise is the most common assumption for noise 

statistics. Therefore we normally have the likelihood function as shown in equation:  

                                                                                                       (2)  

 

where )(mE is the error function given by 

(3)                                                         

where )(mg is the forward modeling operator and DC is called the data covariance matrix, 

which consists observation error and theory error. The marginal PPD of a particular model 

parameter, the posterior mean model and the covariance matrix are:  
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All of the three equations can be expressed in the form of an integral  

                                                                                                        (7)              

 

For multi-dimensional problems, evaluation of those integrals is computationally very 

expensive; some of the methods for evaluating these integrals are described below.  

 

Simulated annealing 

 

Simulated Annealing (SA) is a global optimization method drawing analogy between the 

model parameters and particles in an idealized physical system (Sen and Stoffa 1995). All the 

particles are distributed randomly in a liquid phase after being heated to a certain temperature. 

The crystallization, or the minimum energy state, occurs if annealing process follows a slow 

cooling schedule. Thermal equilibrium is required at each temperature with the probability：                                

                                                                                                      (8)                                                   

 

where E  is the energy function. In our application, the set S  consists of all possible states 

(models) and K  is Boltzmann’s constant, which is set equal to 1 in our problem. The energy or 

the error function is given by 

                                                         (9)                    

where )(mg  is the forward modeling operator and D
C is called the data covariance matrix, 

which consists observation error and theory error. We can rewrite the Gibbs distribution as PPD 

of model parameters:                                                                                                                                                                                                                                                 

   .                           (10) 

Several modifications are employed by Ingber (1989) to improve the speed of SA, namely 

very fast simulated annealing (VFSA). Instead of building NM-dimensional Cauchy distribution, 

NM-product of one-dimensional Cauchy distribution is applied (Sen and Stoffa 1995).  

The problem is: both SA and VFSA attempt to reach the global minimum using a 

temperature-ladder, which has the conflict with the requirement of MCMC that all the states stay 

at the same temperature. To be more specific, the proposal distribution becomes sharper and 

sharper along the cooling schedule defined by VFSA, which bring biasness to the estimation due 

to the short tail (Sen and Stoffa 1996). The mean value of samples is not the true expectation 

value, although they are very close to each other. Furthermore, the variance of estimation is 

usually underestimated. Greedy importance sampling, described in the following section, avoids 

biased sampling by taking fixed steplength and using independent sampling method.  
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Greedy Importance Sampling 

 

Importance sampling draws independent samples from a simpler “proposal” distribution Q, 

and then weighs these points by the ratio of posterior pdf P and prior pdf Q to obtain a “fair” 

representation of PPD. However, if Q misses high probability regions of P, the resulting 

estimator will have high variance because the sample will almost always contain 

unrepresentative points but is sometimes dominated by a few high weight points (Schuurmans 

and Southey 2000).  

 

To overcome this problem, Schuurmans and Southey (2000) presented Greedy Importance 

sampling (GIS) based on a simple variation of importance sampling. Starting with independent 

sampling from a given prior distribution Q, GIS expands each individual sample to a block of 

points by explicitly searching for important regions of the target distribution P. Due to the trend 

based search algorithm, each sample block will contain at least one or two important points from 

the posterior distribution. The advantage is that even if Q misses high probability regions of P, 

the weighted samples from Q still be able to demonstrate a “fair” representation of P. The 

procedure of GIS is illustrated below (fig. 1):  

 

  Step 1: draw samples m independently from Q . 

  Step 2: For each im , let .1, ii mm   

  Compute block }...,{ ,,2,,1, niiii mmmB  by taking local search steps in the direction of 

maximum |)()(| mPmf until a local maximum or 1n steps. 

  Weigh each point ik Bm  with a weight )(/)()( , ikikki mQmPmw  , where  

))2)(1(/(1 21   kkbbb kiiiik  with ib an inward branching factor and  

].1,0[  nk  

  Step 3: Create the final sample from the blocks of points 

nqqnn mmmmmm ,1,,21,2,11,1 ,...,,...,,...,,,..., . 

  Step 4: For a random variable ,f estimate )(E )( mfmP  using the formula 

 .)()(ˆ
1 1 , 
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Figure 1. Workflow of greedy importance sampling (from Shuurmans and Southey 2000). 

 

Therefore we expect smaller uncertainty of the true estimation and faster convergence than a 

general importance sampling. Furthermore, compared with VFSA, the prior distribution of GIS 

is non-temperature dependent and can be as large as possible, which means a better 

quantification of uncertainty than VFSA.  

 

The crucial issue is where to start the local greedy search initialed by 1,im . Sampling from a 

uniform distribution is perhaps logical but it is time consuming to generate blocks with large 

samples considering forward modeling is required at each step. An efficient way is to start from 

a region near the global minimum error, which can be located by VFSA with a small number of 

iterations. We describe this approach in the next section.  
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Greedy Annealed Importance Sampling (GAIS) 

 

GAIS avoids being trapped into a local minimum and enables faster convergence by 

employing VFSA before GIS. Uniformly drawn temperatures are used as initial temperatures, for 

multiple parallel VFSA. In a Bayesian framework, we can consider the temperature to be a 

hyper-parameter. Parallel VFSA starting from these temperatures with a small number of 

iterations (about 200) is employed to locate the regions near the global minimum error. Then 

blocks will be expanded according to the second step of GIS to explore important regions  

 

Seismic Modeling  

 

One of the goals of seismic inversion is to estimate subsurface impedance models ),( ZsZp . In 

order to improve the resolution of our estimation, we use fractal based initial models (Srivastava 

and Sen 2009, 2010), which have the same frequency band as that of the well log. Fatti’s 

approximation (Fatti. et. al.1994) is employed to calculate the angle dependent reflectivity:  

 

 

 

 

(11) 

                                                                                                                                                                                  

 

where spZ , are compressive and shear wave impedance, ρ  is the density, and θ  is the reflection 

angle. 

 

Synthetic seismogram using the convolution of the wavelet and reflectivity are constructed. 

The error is evaluated using 2L Norm of the misfit between forward modeling and seismic 

observation together with 2L Norm of the misfit between velocity model and well log statistics.  

 

EXAMPLE 

 

Test with Hampson Russell Strata demo data 

 

Here we demonstrate the feasibility of GAIS in seismic inversion based on a 2D line of PP 

prestack data set, given as a demonstration data in Hampson and Russell software，which is 

available in STRATA module. For the preliminary test and quality control, we employed GAIS 

inversion on the seismic traces located at the well location within an angle range of 3 to 
24 . 

Before inversion, well tie, wavelet extraction and angle gather generation were carried out using 

Hampson Russell software package. The well log measurements do not contain shear wave 

velocity.  

 

At first, 20 temperatures are randomly drawn from 1  to 100  and treated as initial 

temperatures for VFSA. 20% deviation from the well logs is employed as prior constraints for 

velocity models. Starting with each initial temperature, parallel VFSA with 200 iterations each is 
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applied to update ρZsZp ,,  from fractal based initial models. Due to limitation of large angles, it 

is impossible to estimate reliable density, thus we do not update density models after this stage. 

Next we use the best fit modelss of ),( ZsZp  from each VFSA as starting model and expand 

those to sample blocks using the criterion defined in step 2 in the workflow of GIS (fig. 1). 

Specifically, at each grid point ),( ZsZp , we define four candidates with perturbations of  

),,( ZsZp  ),,( ZsZp  ),( ZsZp   and ),( ZsZp  , as the square’s end demonstrated in 

fig. 2 (right) in blue circle. Only the one with minimize misfit (red circle in fig. 2 right) will be 

chosen for the next grid point. This is repeated 30 times with a fixed step length of 

ccgsmZsZp /*/50  .  

 

To summarize, as shown in fig. 2 (left), the middle point locates the best fit model after 200 

iterations of VFSA and the green point locates the end model after 30 steps of greedy search. The 

magenta points indicate the direction of searching. In the end, all the samples are weighed and 

summed to estimate the expectation values of ),( ZsZp .  

 
 

 

 

 

Figure 2. Three marginal probability maps of one layer at the well location (left) with each map 

corresponding to one greedy search after independent VFSA.  Zoomed one marginal probability map 

(right).  

 

 

RESULTS 

 

Qualify control plot at the well location is shown in fig. 3 and fig. 4. The mean value of 

inverted P and S impedances as well as the variance of all accepted impedance samples derived 

from GAIS are compared with those derived from the best fit model after 1000 iterations of 

VFSA (fig. 3). The same fractal based initial models are used for both methods for comparison. 

 

Based on the estimated impedance model, Fatti’s approximation (Fatti. et. al.1994) is applied 

for forward modeling of reflectivity. Synthetic angle gathers using convolution of the reflectivity 

with the wavelet are compared with the real measurement (fig. 4).  
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Figure 3.  Left two columns: Impedance from well logs (blue), initial model (magenta-), the best fit model 

from VFSA (green-) with 1000 iterations and the mean model derived from 10 realizations of GAIS 

(red). Right two columns: relative variance of all samples generated from VFSA (blue) and GAIS 

(red).  

 

 

 

 

 

 

 

 

 

 

               

 
               

 

(left 2)                          (left 1)                          (middle)                       (right 1)                       (right 2) 

Figure 4. Seismic angle gathers of  


3 to


24  from the measurements (left 2), synthetic angle gather 

generated from best fit model of VFSA with 1000 iterations (left 1) and their residuals (middle), 

synthetic angle gather derived from 10 realizations of GAIS (right 1) and their residuals (right 2). 

 

After quality control at the well location, we further employ GAIS along the 2D line to run 

inversion trace by trace. Fig. 5, fig. 6 and fig. 7 show the inverted Zp, Zs and ZpZs ratio near the 

well location (CDP number 71) derived from GAIS and from the mean model of VFSA with 800 

iterations. 
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Figure 5. inverted Zp using GAIS (left) and compared with mean model of VFSA with 800 iterations 

(right). 

 
Figure 6. inverted Zs using GAIS (left) and compared with mean model of VFSA with 800 iterations 

(right). 

 
Fig. 7: ZpZs ratio derived from GAIS (left) and compared with the mean ZpZs value from VFSA with 

800 iterations (right). 
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DISCUSSION 

 

Based on our test using Hampson Russell Strata demo data, we note that the inverted P and S 

impedances from GAIS follow the well log trend better than the best fit model from 1000 

iterations of VFSA (fig. 3). Furthermore, as we expected, the variance from VFSA with 1000 

iterations is smaller than GAIS because VFSA is temperature dependent and the sampling is 

biased towards the best fit model, which results an underestimated variance (Sen and Stoffa 

1995). GAIS addresses this problem by further expanding the sample space in the direction of 

important region with fixed small step length and assigning the weights based on the ratio 

between posterior distribution and prior distribution. 

 

Inverted ZpZs ratio along a 2D seismic line (fig. 7) using GAIS shows more continuity than 

the mean model from VFSA with 800 iterations, which helps to identify the gas layer (marked 

using black curves) away from the well location more easily and accurately.  

 

CONCLUSIONS 

 

In this paper we investigated the applicability and accuracy of a newly developed GAIS 

algorithm to seismic inversion. GAIS starts to seek important regions starting with models that 

are close to the important regions already located by VFSA and estimate the expectation value 

very accurately. Furthermore, the blocks of samples generated using GIS around the global 

minimum error region provides reliable uncertainty of the estimation, which assess the problem 

of under estimated variance resulted from typical VFSA. Our test using Hampson Russell Strata 

demo data demonstrates a superior performance of GAIS than using VFSA alone.  
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