

Comparison of Fluid Prediction Success between AVO and Bright Spot Techniques in the Marco Polo Field, the Gulf of Mexico.

> Krongrath Suwannasri, under supervision of Dr. Robert Tatham, and Dr. Kyle Spikes

Statement of Problems

- Bright spot amplitude often misleads the fluid-type interpretation
- AVO analysis extracts rock physics information which the bright spot technique does not do.
- This study utilized AVO techniques as a mean to correct fluid-type misinterpretation from the bright spot method.

Location of The Marco Polo Field

Bright Spots in the Marco Polo Field

Bright Spots in the Marco Polo Field

Bright Spots and the discovery well

Development wells

 Not all of the bright spots
were gassaturated sands

 Not all of the non-bright spots were brinesaturated sands.

Background Theory

• AVO intercept and gradient

 $R(\theta) = \mathbf{A} + \mathbf{B}\sin^2\theta$

Where

$$A = \frac{1}{2} \left[\frac{\Delta V_p}{V_p} + \frac{\Delta \rho}{\rho} \right] \quad \text{and}$$
$$B = \frac{1}{2} \frac{\Delta V_p}{V_p} - 4 \left[\frac{V_s}{V_p} \right]^2 \frac{\Delta V_s}{V_s} - 2 \left[\frac{V_s}{V_p} \right]^2 \frac{\Delta \rho}{\rho}$$

Generally, gas saturated sands in deep water GOM have class III AVO response on the top interface between shale and capped sands

Theory (con't)

• Elastic Impedance (EI)

 $EI(\theta) = V_P^{(1+\sin^2\theta)} V_S^{(-8K\sin^2\theta)} \rho^{(1-4K\sin^2\theta)}$

Where,
$$K = \left(\frac{V_s}{V_p}\right)$$

Generally, Crossploting EI for near and far offset allows a greater separation between gas and brine-saturated sands

Lambda Mu Rho (LMR)

 $\mu \rho = Z_s^2 = (\rho V_s)^2$ $\lambda \rho = Z_P^2 - 2Z_s^2 = (\rho V_P)^2 - 2(\rho V_s)^2$

 $\lambda \rho$ is a matrix and fluid indicator, where as $\mu \rho$ is mainly an matrix indicator

Mapping horizons and faults

Fluid Substitution Results

Intercept and Gradient Forward Model

Large negative values of A&B indicated top of gas sands Large positive values of A&B indicated base of gas sands

El Forward Model

LMR Forward Model

Intercept and Gradient Crossplot

El Near and Far Offset Crossplot

LMR Crossplot

Example of Fluid-Type Prediction Results (ST3: wet well)

Percentage of correct fluid-type prediction

Conclusions

- All AVO techniques had superiority in fluid-type prediction than the bright spots method
- The prediction results improved as the computational intensity of the inversion increased from the intercept and gradient, to the elastic impedance, and to the LMR technique.

Acknowledgements

- Dr. Tatham and Dr. Spikes: Project Supervisors
- Dr. Carlson and Dr. Bell: Honor Program Director
- Thomas Hess: Software Mentor
- Anadarko: Providing seismic data
- Dr. Carlos: Providing well logs data
- Mom and Dad

Special Thanks to our Sponsors

