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Imaging beneath salt is difficult because the waves we use to probe the salt body 

and the structures beneath it follow complicated paths: Diffractions, multiple 

arrivals,  refractions and prism waves are difficult to model using ray based and 

one way wave equation methods.



Two way solutions based on explicit time marching can model these complicated 

waves but their accuracy is dependent on the wave equation selected and its 

numerical implementation. Numerical implementations methods include: finite 

differences, optimized convolutional operators and pseudo spectral methods for 

the spatial operators.



Given the difficulties in imaging salt bodies and the 

structures beneath due to

complex wave paths

uncertainties in the velocity model

limited: apertures, bandwidth & coverage during the data acquisition

it should be clear that

we want to use the most accurate numerical method possible so we 

can eliminate uncertainties in the imaging process due solely to the 

numerical methods employed

we also know:

computers continue to get faster and less expensive making more 

accurate numerical methods economically feasible



In this paper we address the numerical issues for 

seismic modeling and RTM using a 2 way wave 

equation propagator:

what should we use for the spatial operators ?

finite differences

optimized convolutional operators

pseudo spectral methods 

what is the best method to advance the wave fields in time ?

2nd order finite differences

higher order finite differences  e.g. Lax-Wendroff

rapid expansion method

so that we can minimize numerical errors and reduce 

uncertainties and numerical noise in the RTM 

imaging process.





Laplacian Evaluation

pseudo spectral operator:   )(2
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truncated Taylor series expansion leading to

standard finite difference, D, operators 4th, 6th , 8th order etc.

optimized finite difference operators based on

finite impulse response, FIR, operator 4th, 6th, 8th order etc

the last two can be viewed as a convolution of the wave field 

with the operator in space
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Zhou & Greenhalgh, 1992

convolution theorem

Convolutional Finite Difference Operators
--- 2nd-order derivative

discrete convolution coefficients

inverse Fourier transform
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is the Nyquist frequency.
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FIR Convolution Coefficients

2nd-order derivative on standard grids

2nd -order derivative on regular grids

is replaced with a convolutional Finite 

Impulse Response filter 

FIR(n) = d2(n)*w(n)

w(n) is a Hanning tapered version of the 

standard operator d2(n). N is the half 

truncation width, alpha = .54 & beta = 6.0

After Chu et al., 2009 
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Dispersion Curves

2nd-order derivative on standard grids: FIR vs. truncated Taylor

Chu et al., 2009 

13 point FIR used



now we compare the 3 Laplace operators:

pseudo spectral – fft

4th order finite differences – convolution

13 point FIR – convolution

to record long offsets we place the source at 1.0 km

we record 10 seconds of data

the sample rate was .008s 

all other model parameters remain the same



One Step REM  and 4th order FD



One Step REM  and 13 pt FIR



One Step REM  and pseudo spectral



One Step REM  and d4 and FFT – d4



One Step REM  and FIR and FFT - FIR



One Step REM  and FFT – d4 and FFT - FIR

Comparison of differences

to pseudo spectral method



Now for the time operator:









Initial Condition:       p0(x,y,z,t=0)=delta(x-xs, y-ys, z-zs, t=0)

Calculate Chebyshev Polynomials:

apply Laplace Operator

get next Chebyshev polynomial using  recursion

Integrate Chebyshev Polynomials with Jk(tR)

save receiver data this time or

save snap shot data this time or

save both

One Step REM

for k = 2,4, …. M = tR

for all times

of interest



Qk is defined and computed for the

entire volume, but we only need to

keep and integrate the values of Qk

where the receivers are located.

For example, if we are acquiring data

at the surface, only the values of Qk

along the surface need to be saved

for use in the integration.

This can greatly reduce the storage

volume needed for 3D simulations.

For surface data we 

only need to save 1 

slice of Qk from the 

3D volume



The integral can be 

limited based on the 

values of the Bessel 

Function at a given 

time.

R is defined from the 

spatial sample rate 

and the maximum 

velocity:

For values >tR the 

magnitude decreases 

quickly. Similarly a 

lower limit can be 

defined as a % of the 

line defining the 

maximum k needed.



now we show the Qk Chebyshev polynomials
for k=300 to 750 every 50

we use the pseudo spectral or fft for the Laplacian

the source is a unit impulse response at 6.0 km

the sample rate was .008 s

we record 5.0 s of data

dx = dz = .02 km





















We know where the waves will go but not when they will arrive !



One step REM



Recursive initial Condition:       p0(x, y, z, t)=p(x, y, z, t)

Calculate Chebyshev Polynomials:

apply Laplace Operator

get next Chebyshev polynomial using  recursion

Integrate Chebyshev Polynomials with Jk(dtR)

save receiver data this time p(x, y, z, t) or

save snap shot data this time or

save both

Start again using p(x, y, z, t) as the initial condition

For RTM we use Recursive REM

for k = 2,4, …. M = dtR

for all times

of interest



Q terms 1 and 8 for the recursive REM at the time step of 1.6 s















isotropic pre stack depth migration 



anisotropic VTI pre stack depth migration 



Conclusions

Time stepping:

One step REM allows the wave field at any time and in any time order to be extracted 

from the Chebyshev polynomials

Only the grid positions of interest (e..g receiver locations) in the Chebyshev 

polynomials need to be saved greatly reducing the storage requirements for 3D 

problems

Only a subset of the Chebyshev polynomials are actually required in the integration to 

produce the wave field at a specific time

One step REM and recursive REM give nearly identical results

Advancing in time based on recursive REM or time finite difference operators give a 

similar result if the internal dt for the time finite differencing is small enough to 

guarantee stability



Conclusions, continued 

Laplacian:

4th order finite difference operators result in dispersion errors and are not 

suitable for high resolution simulations or RTM, increasing the order improves 

the result but we reach the point of diminishing returns quickly, eg 6th or 8th

order

FIR or optimized finite difference operators perform much better than the 

standard truncated finite difference operators as they recover a larger part of 

the wave number band without error and have a finite spatial response. A 13 

point FIR operator performs very well in the examples tested and there is 

marginal difference in the computation time compared with the standard finite 

difference operators.

Pseudo spectral operators using the FFT provide the most accurate spatial 

response possible (no grid dispersion) as no approximations to the spatial 

operators are required. Speed is an issue and is hardware dependent.


