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Questions

 How do we verify effective media models?
[Part 1]

* Given effective stiffness tensors, how do
we compute reflection coefficients?

[Part Il]



Background

 How do we compute reflection
coefficients?
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Boundary Conditions

Liguid/Solid Interface

We know Tigia 2= %o 2 The additional conidition we impose is
“anti-cavitation condition” which is - Uiquid =Z-Usoiid , i.e. the
normal components of the displacement must be continuous.
Notice that all of the displacement components need not be
continuous across the interface because the liquid is free to move

sideways

(Tzz )solid = (TZZ)quuid

(72x )solid = (7 )quuid =0

T =(z =0
(Zy solid (Zy)iquid



Boundary Conditions

Solid/Solid Interface
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Solid/Solid (Welded Contact)

7-L= 72'2

U]_: UZ

All three components of displacement are continuous since the solid
being in welded contact is not allowed to move sideways. In other

words the vector IS continuous.



Reflection Coefficients
AKki and Richards (2002).

Steps

e incident plane waves have unit amplitude; the reflected and
transmitted waves have the amplitudes of reflection/transmission
coefficients

o express displacements and stress components in terms of these
plane wave potentials

 Apply boundary condition at the boundary

 Solve the resulting system of equations for the R/T coefficients



Faults/Fractures

* Linear Slip Model (Schoenberq)

e Stresses are continuous — displacement
discontinuous

* The resulting reflection coefficients are
frequency dependent

* Observation of a phase shift even at
normal incidence

[van der Neut, Sen and Wapanear 2007]
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Fractures are a common feature in the
subsurface,

Observed in many scales, from faults to
micro-cracks,

Parallel micro-cracks introduce seismic
anisotropy (Schoenberg & Douma, 1988),

Characterization of the orientation and
density of fractures has important practical
applications (Sayers, 2007).

Two approaches to incorporate the effects

of fractures in wave propagation:

@ Using equivalent media theories,

@ Simulating the fractures in a numerical
scheme.
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Goals

@ Develop a numerical approach to incorporate fractures in
wave-propagation simulations,

@ Validate the Equivalent Media Theories,

© Investigate numerically the sensitivity of the data to the fracture

E'P_!.S.Enj/
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Equivalent Media Theories

= Equivalent Media Theories predict the effective elastic
properties of fractured media given some fracture parameters.

= Common assumptions:

0 ldealized crack shape,
0 small aspect ratio and crack density compared to wavelength,
0 Cracks are isolated with respect to fluid flow.

= Examples of Effective Media Theories:

0 Kuster-Toksoz,
0 Differential Effective Medium,
0 Hudson,

0 Eshelby-Cheng. e
EP.GE‘?JL/
(Mavko et al., 1998; Saenger et al., 2004, and references therein) N
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Numerical Approaches

= Approaches that have been proposed in the literature:

0 Use locally an effective medium (Vlastos et al., 2003),

0 Incorporate locally a low velocity and low density inclusion into a
finite difference scheme (Saenger & Shapiro, 2002; Saenger et al.,
2004), and

0 Explicitly use a displacement discontinuity condition using the
linear-slip model (Zhang, 2005; Zhang & Gao, 2009).

m [he advantage: they require few assumptions and therefore
they have a broad applicability and are useful to validate the
equivalent medium theories.

m Approaches based on the linear-slip model require the least
number of assumptions. E‘.?EE%}
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The Linear Slip Model

Linear-Slip Model (LSM): Prescribes a linear relation between the
traction vector and jump in the displacement:

u] =27, (1)

where [u] is the jump of the displacement, 7 is the traction vector
at the fracture and Z is the fracture compliance matrix. For a
fracture with rotational symmetry about the normal, the fracture
compliance matrix is given by (Schoenberg & Douma, 1988;
Zhang & Gao, 2009)

Z.'j - ZNn.'nj + ZT(OIJ ninj)a (2)

where Z1 and Zy are the tangential and normal components of
the compliance matrix. ED.QEB%
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Discontinuous Galerkin Method

= The Discontinuous Galerkin Method (DGM) is a generalization
of FEM that allows for the basis functions to be discontinuous at
the element interfaces.

= |P-DGM: Interior-penalty formulation

0 SIPG: Symmetric Interior Penalty Galerkin (Darlow, 1980),
0 NIPG: Non-symmetric (Riviere & Wheeler, 2001),
o [IPG: Incomplete (Dawson et al., 2004).

= Advantages

it can accommodate discontinuities in the wave field,
it can be energy conservative,
it can handle more general meshes, and

O
O
N _ _ . _ _EDGER
O it is suitable for local time stepping and parallel implementations.™ %
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Accuracy and Stability of DGM

= Grid dispersion and stability analyzed in De Basabe et al.
(2008) and De Basabe & Sen (2010).

®= Superconvergence of the grid-dispersion error with respect to
the sampling ratio for the symmetric formulation and nodal
basis functions,

= The numerical anisotropy is negligible for basis of degree 4 or
greater,

= Stability condition in 2D given by

alt
—— < 0.2
Ax = >
where Ax is the smallest spatial increment, At is the size ggtggi

time step and « is the largest P-wave velocity.
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Interior-Penalty Weak Formulation

Find u € X? such that for all v « X°

3 ((pa,,u, V)e + Be(u. v)) + Y Swv;S R =Y (fv)e

EcQp YET EcQy

where XP = {(,0 o e H(E)VE € Qp, o =0o0n Fo}
Be(u,v) — L (Aawidy; + (@t + oy ) d9.
S(.viSR) = — [(n(u)vl v+ [ (n(v)Hu] o

Y Y

+ R [ A+ 2uullv o,
.
T,'(U) = a;j(u)nj = AUk ki + ﬂ(Ui,j + Uj,i)nj-

The parameter R is the penalty, and S is a parameter that takes thEQQFFL\Q}
values S =0 for IIPG, S = —1 for SIPG and S = 1 for NIPG.
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Proposed Numerical Scheme

Find u € XP such that for all v € XP

> ((pa,,u, V)e + Be(u. v))

EcQ,
+Y (U v;S R+ Y J(uv;S.R) =D (f.V)E
vyEle ~yerly EcQ,

where ' C Iy is the subset of all faces where the displacement field is
continuous, 'y C Iy is the subset of faces that represent fractures, and

Swv) = [y dr

The linear slip condition is weakly imposed through this term.

E'D.ﬁs&}
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® Domain: 1 Kmx 1 Km,

® Point source at (0.5, 0.3), ( )

® Horizontal fracture ( ) ) )
centered at (0.5, 0.5), T g

m Vp=23.31 Km/s,
Vs =1.62 Km/s, p=2.5
g/cm?®

EP.:G.EF%
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Results

Seismograms of the homogeneous and faulted models — 15 Hz source
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Results

Seismograms of the homogeneous and faulted models — 30 Hz source
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Conclusions

= The numerical results show that the discontinuity introduces a
phase shift and that the reflection and transmission coefficients
are frequency dependent, in good agreement with the analytic
solutions given in van der Neut et al. (2008).

= The proposed method is not restricted to simplified models, it
can be applied to 3D models and arbitrary geometries for
fractures and media parameters.

EU_.G.E&}
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Part |l

Fractured Porous media - anisotropic stiffness
coefficients that are frequency dependent.

Anisotropic Systems: homogeneous, stratified
and laterally heterogeneous media

SVD: phase velocity, degenerate eigenvalues

Eigen vector matrix, anisotropic reflection
coefficient.



Heterogeneous Anisotropic Earth
Models

Linearized Momentum Equation pu=V.z +f

Constitutive Relation 1=C:e=C:Vu
Wave Equation pii=V.(C:Vu)+f

Field Variables: 6 components of stress and 3
components of particle displacements

Earth Model Parameters: 21 elastic coefficients and
density



Frequency dependent
anisotropy

Ty = Cijat * U1 (1)

’

in which ‘¥’ denotes time convolution and repeated
subscripts imply summation. The momentum equation is

p u; = Ttk 2)

in which p is mass density, ¢ is time and f is body force per
unit volume. To remove derivatives in x,, x, and ¢ from
these equations we take a triple Founer transform:

S(Pl:Pz:w)=j dle dx,

X f drexp [iw(f — pyx; — pxr) g (xy, X3, 1)
3)



After some algebraic manipulations one then obtains the
first order system in the form

d;b=iwAb — ! (0) (4)

w \f



()

is the vector of motions, u=/(u,, u,, u;]”, and scaled
tractions, ¢ = (i/®)[T,3, T23, T33]". One reason for scaling
the tractions is that it makes the components of A real when
the medium is lossless, which is useful in certains kinds of
computations. The system matrix A has the form

(1 S)

where T, S, and C are 3 X 3 submatrices and C and S are
symmetric. Note that A has this same form and these same
symmetries even if any or all of w, p,, p,, or the ¢, are

Fryer and Frazer 1985



A Is diagonalizable

Eigenvectors of A with different
eigenvalues are orthogonal

There is a matrix D and a diagonal
matrix A such that AD=DA

The elements of A are the upgoing and
downgoing vertical slownesses



How do we diagonalize A?

e Itis a complex matrix and is NOT
symmetric

o Apply a similarity transform to make A
symmetric [Fryer and Frazer 1985]

* \We can use Jacobi iteration to diagonalize
a complex symmetric matrix



If Dis the local eigenvector matrix of A then
D'AD=A

A =diag(qp. 45, A5 9P 951 52)

Im(g®)>0 and Im(qg") < 0.



(b)

Fryer and Frazer 1985



pe for the calculation of BT coefficient.

1. Form matrix D[_; for the medium i—1
2. Form matrix D, for the medium i

3. Form @ =DD,

4. Use submatrices of 0 to form R

5. Identify rp,, Fpg, Tip, Fig, €IC.

For anisomropic lavers steps 3 and 5 need to be done numencally. For isowopic and transversely
isotropic lavers, step 3 can be camed out analytically.



vertical slowness (s/km)
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|ref coef|
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vertical slowness s/km
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vertical slowness (s/km)
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|ref coef|
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vertical slowness (s/km)
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|ref coef|
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vertical slowness (s/km)
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|ref coeff|
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|ref coeff|
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Summary

Our work on Discontinuous Galerkin finite
element method is ongoing

- 3D
— Include multiple fracture sets (pores, cracks)

Interesting case studies with fractured
porous media

Frequency dependent AVO (spectrum
versus offset)

Freqguency dependent shear wave splitting
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