

PP & PS wave velocity analysis and joint prestack inversion in the same PP timescale domain

Zhiwen Deng Visiting scholar in the Institute for Geophysics, University of

Texas at Austin, from BGP, CNPC

SCHOOL OF GEOSCIENCES

Introduction

2 Technical method

Conclusions

Introduction

Advantages in reservoir characterization by MC exploration

- Much more information (P,P-S & S-S) acquired with multicomponent exploration comparing with p-wave exploration;
- 2, It's more reliable to predict lithology and fluid using multicomponent information;
- 3, It's more accurate to identify the orientation and intensity of fractures using shear wave splitting;
- 4, It's effective for true or false bright spots identification, improving gas chimney image,.....

More difficult problems exist in the MC application compared to P-wave, i.e., statics, resolution, velocity analysis, image, horizon calibration & joint inversion etc.

Data processing problems

- 1, PP & PS wave velocity analysis and imaging done separately at different time scale domains
- 2, Final PP & PS wave data with different travel time for the same horizon

Introduction

Problems

8	
84699 <u>1</u> 301 001 001 1001 1301 1401 1001 1001 2001 2301 2401 2401 2401 2401	<u>))] - 3 691 3 891 4 691 4 491 4 491 4 891 5 991 5 291 5 491 5 691 5 691 6 69</u>
	Nu
0	
	69
19	
ui	1.0s "
0	
Di	
	Provide side of the second
	2 De
9	
28	
29	
	D wave and DS wave
29	
	着 / / / /
	sections processed by
	traditional method.
* P-S time	
a	

Problems

Introduction

PP & PS wave Horizon calibration or inversion problems 1, Registration is necessary for PP & PS wave horizon calibration and inversion 2, Exact horizons and velocity needed in PP & PS wave registration

Introduction

New PP & PS wave velocity analysis and inversion method

- 1, PP & PS wave velocity analysis and inversion
 - completed at the same time scale domain
- 2, Final PP & PS wave data with the same
 - travel time for the same horizon
- 3, Registration processing is not needed

Time scale *DSv* wave velocity analysis

$$H = T_{ppo} \cdot V_p(T_{ppo}) / 2$$

$$H = T_{sso} \cdot V_s(T_{sso}) / 2$$

$$H = T_{pso} \cdot V_p(T_{pso}) \cdot V_s(T_{pso}) / (V_p(T_{pso}) + V_s(T_{pso}))$$

P-SV wave travel time-distance curve

Double square root equation

$$t = \int t_{0P}^{2} + \frac{x_{P}^{2}}{v_{P}^{2}} + \int t_{0S}^{2} + \frac{x_{S}^{2}}{v_{S}^{2}}$$

Taylor series expansion equation (Thomsen, 1999)

$$t_{PS}^{2}(x) = t_{0PS}^{2} + \frac{x^{2}}{v_{c}^{2}} + \frac{A_{4}x^{4}}{1 + A_{5}x^{2}}$$

P-wave and SV-wave velocity analysis in the same P-P time domain

P wave section(left) and SV-wave section (right) at the same T_{ppo} time domain

		SOURC	CE					20174						1
		CHAN						0						
		1	1	1	1	1	1	1	1	1	1	1	1	
	300-					111	1727	KM	<u> </u>	स्ता				- 300
	600-	\vdash		+++++		<u> </u>	<u>ete</u> te		2220	2H				E-600
	700 -				45	E SE	35550	ŖŒ		33 J				-700
					12555	5552	3350	<u> </u>	226j	222	{{			E
	800-			ΠŲ	38	SI	<u> </u>	<u> </u>	KSS.	BSI)				E-800
	900 –	$\left \right $		+J\$) [283	K RÎ	Ð	(MI)	99H	$\left \right \left \right $		900
	1000-			\square	151	<u>(8)</u>	<u>35)</u>	333		1444	<u> </u>			E-1000
								<u></u> Y4	1433	(753)				Ē
	1100-				233	RŴ	ÌÌ.	ŇŔ		Ž Ř	15	1111		E-1100
ms	1200-	\vdash		12252	ES)	833	3455	XXX	1			4		1200
me (1300		K	<u> </u>	<u>{{}}</u>	<u> {{}}</u>	355	3.2.2.2	15251	<u> 1885</u>	333	<u>}</u>		E 1300
F					<u> </u>	2222	335	148	3484		RS.	311		Ē
	1400		128	र्रिसे	स्रो	313	र् र्रे हे	हरा	1111	12222	NH.	222		E-1400
	1500-			<u> </u>	KII			<u> </u>		Hitte		1	++++-	1500
	1600 -		1335)165		155	7395	155	252222	555	<u> </u>	st?}		E 1600
			933	\mathbb{R}));}}	<i>रेड्रे</i> हे	3233	-83		$\mathcal{D}\mathcal{D}$	ÐŲ.	151)	<u>{</u>]	
	1700-		38	33	55	<u> </u>	<u>354</u> 2		ইংগৈ	335	file	522	\$ <u>+</u>	E-1700
	1800 -		7555		2222	<u> </u>	355	₹ <i>R</i> ₹3	<u> </u>	323		<u> </u>	- 135	1800
	1000		2225		12252	222	212	2){}}		(D)	STI-	535	555	E 1900
	1300	X	781)	<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>	KX	Æ	832	1225	<u>199</u>		337	E 1900
1	-	112	17693	18-11	SPIR	र तर द		M 12/	166	100	w ny		- N 7 'N	F

CIP gather of P wave

CIP gather of PS wave

PP(left) & PS(right) wave Kirchhoff prestack time migration

Objective function

$$E = 2\omega_p \frac{\sum (d \frac{obs}{p} - d \frac{pre}{p})^2}{\sum (d \frac{obs}{p} + d \frac{pre}{p})^2 + \sum (d \frac{obs}{p} - d \frac{pre}{p})^2} + 2\omega_{ps} \frac{\sum (d \frac{obs}{ps} - d \frac{pre}{ps})^2}{\sum (d \frac{obs}{ps} + d \frac{pre}{ps})^2 + \sum (d \frac{obs}{ps} - d \frac{pre}{ps})^2}$$

Comparison between raw velocity /density (red) and PP & psv joint inversion velocity/density(blue)

Comparison between raw velocity /density (red) and PP & psv joint inversion velocity/density(blue)

Trace Data: KTI/IG-PP-aria-15-96-3	Traz Data STADK-PS-ara-15-36-3					
IDP 4621 4622 4623 4624	DP 4521 4522 4523 4524					
0 ffset (m) 33 - 27 - 21 - 15 15 18 21 24 27 30 33 36 - 36 - 30 - 24 - 18 15 18 21 24 27 30 33 36 - 36 - 30 - 24 - 18 15 18 21 24 27 30 33 36 - 36 - 30 - 24 - 18	Diffset (m) - 33 - 27 - 21 - 15 15 18 21 24 27 30 33 36 - 36 - 30 - 24 - 18 15 18 21 24 27 30 33 36 - 36 - 30 - 24 - 18 15 18 21 24 27 30 33 36					
	▶↓↓↓↓↓↑↑↑↓↓ ↓↓↓↓ ★★★★↓↓★★★↓↓ ↓↓★★↓↓↓↓↓↓↓					
	\$\$\$\$\$\$. \$\$\$\$\$\$ <u>\$</u> \$\$\$? ↓↓↓\$\$\$ <u>333</u> 7771 ↓↓↓↓↓↓ <u>₹</u> <u>₹</u> <u>3</u> 33323					
	804 2222 222 222 222 222 222 222 222 222					
	<u></u>					
<u>▶ ▶ ▶ ▶ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽</u>	┝───── ───────────────────────────────					

	IIII IIII IIII IIIIIIIIIIIIIIIIIIIIIII					
<u>╃╃╁╁╁┧┧┶┶┼┼┼┼┼┼┼┼┼</u> ┹ <u>╃┧┧┼┼</u> ┿╅┼┼┼┼┼┤┦┨╴ <u>┹</u> ╉╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤	┟ ╶╶╷╎╎╎╎┊┊┊┊┊┊┊┊┊┊╷┊┊┊╎ ╎╎┼╪╪╧ <u>╎╎╎</u> ┼┼┼┤┤╎╎┆┊┊┊┊┊┼┼┼┼┼┼┼┼╵╎╎╎					
	······································					
	─────────────────────────────────────					
· · · · · · · · · · · · · · · · · · ·	■ 1112888889997771					

P-wave angle gathers

Ps-wave angle gathers

Example

Horizon calibration

S-wave impedance

Vp/Vs ratio

Standard Deviation/mean

Uncertainty Estimation

Introduction

2 Technical method

Conclusions

Conclusions

1, New velocity analysis method can get PP & SV wave velocity **2,Imaging PP and PS wave in the same time** scale circumvents the registration problem in the data interpretation and joint inversion **3, VFSA prestack joint inversion has higher** accuracy

Acknowledgement

Mrinal K. Sen **Youxin Wang Xue Yang** Yi Tao **Robert Tatham Kyle Spikes Paul Stoffa Rui Zhang**

Special Thanks to our Sponsors

