. Use of priors and E%?ME%}
= hyperpriors Iin seismil

:

.

M S inversion for reservoir
‘2. "M characterization
' Mrinal K. Sen

Jackson School of
Geosciences
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« An ultimate aim in reflection seismic
exploration is to obtain a log of rock
properties as a function of two-way
vertical traveltime or depth > derive
a pseudo-log

 Fill in the gaps between wells

THE UNIVERSITY OF TEXAS AT AUSTIN
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EDGER
Challenge FDHU&

» Seismic data are almost always
insufficient, inadequate and
Inconsistent

e Seismic data carry limited
information on the subsurface

« How do we derive pseudo logs that
are geologically meaningful and
useful for reservoir characterization?

THE UNIVERSITY OF TEXAS AT AUSTIN
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xample: Norma
incidence

seismograms
 Post-stack seismic

trace

MODEL FORWARD
PARAMETER MODEL

L
W‘®>_$

ACOUSTIC CONVOLUTION OF STACKED
IMPEDANCE Al CONTRAST SEISMIC
WITH WAVELET TRACE
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Forward Model EQH?ME%}

» Impulse Response WGBSR s
 Fourier transform R(_f):(l,.-‘z)f"[‘“”“)] exp(i2n f1) dr,

di

For Broadband, exact reconstruction is

In[A(r)/ As] = 2./- Rit")dr',

InfA(r)/Ay] = 2R(r) = H(1),

Ghosh 2000 ]ACKSON




: EDGER
Normal Incidence @}

» Reality: band-limitation

In[As(e)/Ac) = 2R(r) = b(r) = H(r).
* LOW pass

Ap(t) = Ay exp{in[A(r)/Ay] = 2 £, sinc 2 f; 1}

Ghosh 2000 ]ACKSON




Normal Incidence
data: implication of
band limitation

limited-frequency content results in violation of causality.

A signal which is limited absolutely in frequency cannot be
limited absolutely in duration so much that the signal
cannot be identically zero in any interval of time.

Thus, a reflection response beginning at t = 0, by band
limiting, would be smeared in time and, in a Strict sense,
would be nonzero for most of the negative values of t .

This evidently runs counter to the principle of causality, in
that an observation exists in time much berore it actually
originates.

UT-AUSTIN

EDGER

Ghosh 2000 ]ACKSON
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Normal Incidence
data: implication of
band limitation

This is an inevitable artifact of band limiting. Therefore,
although it is enough to invert the rull-band impulse
response. from some reference time t = 0, the band-limited
Impulse response must be inverted starting from t = —oo,

Fortunately, for practical purposes and a typical seismic
band, the amount of anticausality is small—often a few
milliseconds.

Apart from the anticausal feature, band limiting also
distorts time relationship in the reverse way.: It delays
Information, making it spill over into the future, owing to
the same fundamental result of signal processing.

UT-AUSTIN

EDGER

Ghosh 2000 ]ACKSON 7
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Normal Incic
- - - EDGER
data: implication of @}
band limitation
Low-pass Band-pass

o
L
1

o

In [A(t)/Ai]

v
1

] Actyol
/
=" = Reconstructed

In [A(L)/A,

|
o
I
o
w

T T
0-0 -5

(f,+ 1)t

|
o

JACKSONosh 2000
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Normal Incidence
data: implication of

band limitation

o Shift In the estimated absolute value
of acoustic impedance

» Blocky or layered nature of the well
log is lost

» High frequency variations are
mIissing

THE UNIVERSITY OF TEXAS AT AUSTIN
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— - EDGER
Deterministic Inversion FORUM—%

Interpreted
Seismic Data Well Data
A Priori Wavelet Low- Frequency
Information Estlmation P- Impedance Trend

Post-Stack Inversion Workflow p2eEs g

&Constraints

Bﬂmated Low-Frequency
P Impedance P- Impedance Trend

Model Parameter
Estimates \,
FInaI
P-impedance

Minimize

subject to

THE UNIVERSITY OF TEXAS AT AUSTIN
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FORU
}

File View File View

| wavel L wavel L wave? | wavel L wavel L wave? |

=

wave2 - wavelet time response

wave2 - wavelet amplitude and phase response
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Fle View Process Horizon Database Project History Window
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Ble View Window
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File View

P-Impedance (Inverted Result )
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in reflectivity- blockyness in EggEi

iImpedance?

 Use Non-smooth Constraints -
regularization

How to incorporate spikiness S g

Choose appropriate basis

Routh and Sen 2008

THE UNIVERSITY OF TEXAS AT AUSTIN
o L —
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Formulation of Inverse Problem

THE UNIVERSITY OF TEXAS AT AUSTIN

SCHOOL OF GEOSCIENCES
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EDGER

1 4

A priori
Information

Information
from Physics




Choices for Non-Smooth Model Objectives 7ER | B

Spiky Solution

e.g.: reflectivity

Blocky Solution

e.g.: Interval
velocity,
Tomography

Localized
Changes

e.g.: Time-Lapse
JACKSON.

SCHOOL OF GEOSCIENCES




Inversion in Wavelet Domain using L1 norm
ronum ——« 7

1 4

HEE UNIVERSITY OF TEXA> AT AUSTIN

SCHOOL OF GEOSCIENCES

Routh et. al , 2007




Bayesian Inverse Problem

T (E UN'VLRS TV OF TEXAS AL AU TI d
\
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Bayesian Hyper-Prior Formulation B Epcen

1 4

Prior Distribution Parameters :
P(6) : Prior PDF for 6

THE UNIVERSITY OF TEXAS AT AUSTIN
o L —
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Bayesian Hyper-Prior Formulation B Epcen

1 4

model m

THE UNIVERSITY OF TEXAS AT AUSTIN
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Bayesian Hyper-Prior Formulation B Epcen

1 4

OF TEXAS AT AUSTIN

Caveletti and 7
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Bayesian Hyper-Prior Formulation B Epcen

1 4

THE UNIVERSITY OF TEXAS AT AUSTIN
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Inversion with Bayesian Hyper-Prior Formulation
ronum = 7

y
Break the optimization problem in two

parts:

(close form
solution)

THE UNIVERSIT * OF T_.XAS AT AUSTIN

SCHOOL OF GEOSCIENCES




Deconvolution Problem (S/N = 3)

—
1 4

L2 Norm TV Norm

Gaussian Hyper Prior .'—1 Wavelet Basis

B




Iterative Model Construction

(a) Iteration 0 (b) Iteration 1

nuﬁuﬁ __fn _ Jgﬁ—da&_

100 200 300 100 200 300
(c) Iteration 2 (d) Iteration 3

Ar— A

100 200 300 100 200 300
(e) lteration 4 (f) lteration 6

™M | Y~

200 200 0
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Evolution of Prior Distribution Parameters 0
N 4
I 4

(a) Iteration 0

(b) Iteration 1

100 200
(c) Iteration 2

100 200
(d) Iteration 3

100 200
(e) Iteration 5

100 200
() Iteration 6

0

300 0
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Effect of Hyper-Parameter Yy (Very Important) .

! 4
(a)y=1e+0 (b)y=1e-2

- |
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2D Near-Surface Tomography Example

True Model
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K
=
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Depth (m)




EDGER
Comments @}

» Low-frequency prior + blockyness
constraints > Deterministic inversion

» High freguencies are still missing

THE UNIVERSITY OF TEXAS AT AUSTIN
T L —
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= : 5 EDGER
Deterministic Inversion BEEEsS:

1. Deterministic seismic inversion is limited to the estimation of
band limited (since seismic is band limited) reflectivity series
which corresponds to blocky average impedance profile.

2. In deterministic inversion the estimation is trade-off between
resolution and accuracy.

3. The missing low frequencies contain the critical information
concerning the absolute values of impedance.

THE UNIVERSITY OF TEXAS AT AUSTIN
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: - EDGER
Stochastic Inversion G@}

1. Stochastic seismic inversion is based on generating
multiple equi-probable realizations of the model
parameters dictated by the available log data and
comparing the results with the observed data using
forward modeling.

. Stochastic impedance volume derives its areal
resolution from the seismic data and vertical
resolution from the log data used in inversion
process.

THE UNIVERSITY OF TEXAS AT AUSTIN
T L —
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Need of geo-statistical EDGER
inversion B

To address the smoothing problem in deterministic
inversion, we need to introduce an additional
variation to our estimates which corrects the CDF.

Since geo-statistical simulation is not unique, there
are many possible solutions which satisfy the data.
Each possible solution is referred to as realization.

Francis, A., First Break, 2006

THE UNIVERSITY OF TEXAS AT AUSTIN
T L —
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EDGER

Use well log and seismic data to perform well tie
at each well location and extract a wavelet

Pick horizons in seismic data (NMO corrected angle gathers)
bounding the zone of interest

Interpolate the well logs (Zp, Zs, Density) between the
picked horizons corresponding to each CMP gather

Pick an interpolated log, compute mean, variance
and Hurst coefficient. Generate fractal based
initial models for Zp, Zs, Density

Select a CMP gather, run the VFSA algorithm
which uses fractal based initial model for forward
modeling.

Inverted acoustic and shear

Srivastava and Sen impedance
2009 a, b

SCHOOL OF GEOSCIENCES




Background of our strategy EDGMEE}

e [t is observed from the analysis of
several horizontal and vertical well
logs that porosity distributions follow
fractional Gaussian noise (fGn)

characteristic (Hewett,1986,SPE;
Hardy,1992,SPE).

e A time/space series is said to follow
fGn characteristic if its statistical
measures exhibit following behavior:

THE UNIVERSITY OF TEXAS AT AUSTIN
T L —




- Spectral density of fGn follows power law with
a scaling exponent (alpha):

S(w) = Alw|°
- Variogram follows power law in terms of
intermittency coefficient or Hurst coefficient
(H) as:
y(T)=a-b [T
- Co-variance also follows power law with H
Cov(T) = 02/2 [ |T+1|%8 -2|T|%" + | T-1|2"]

THE UNIVERSITY OF TEXAS AT AUSTIN
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Pre-Stack Inversion
Zp & Zs bounds

Bounds for Zp Bounds for Zs

Bounds
Observed Log Observed Log

Time (ms)
Time (ms)

<

| 1 | 1 | 1 | 1 1 1 | | 1

4500 5000 5500 6000 6500 7000 7500 8OO0 8500 2000 2500 3000 3500
Zp (m/s x g/cm3) Zp (m/s x g/cm3)
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Deterministic Zp & Zs
inversion at well location

Deterministic Inversion (Zp) Deterministic Inversion {Zs)
T T T T T T T
— == Observed — == Observed
Inverted Inverted

@ @
E £
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£ £
[= [=
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5000 5500 6000 6500 7000 8000 3000 3500
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JACKSON
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Stochastic Zp & Zs inversion at

well location

Stochastic Inversion (Zp)

UT-AUSTIN

Stochastic Inversion (Zs)

T T T T T
— —=0bserved
Inverted
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T T
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JACKSON
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25 realizations of Zp (one trace is shown)

Realizations of Zp
550 ’ T T T

JT-AUSTIN

Black line
shows mean
of realizations

4500 5000 5500 6000 6500 7000 7500 8000 8500
Zp (m/s x g/cm3)




25 realizations of Zs (one trace is shown)

Realizations of 7Zs

UT-AUSTIN

Black line
shows mean
of realizations
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25 realizations of density (one trace is shown)

Realizations of Density

Black line
shows mean
of realizations

Time (ms)

22 24
Rho (g/cm3)




Time (ms)

Pre —stack stochastic and deterministic results
for Zp in same scale for a line

Trace number Trace number
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Pre —stack stochastic and deterministic results
for Zs in same scale for a line

UT-AUSTIN
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Summary of stochastic
inversion | .

1.Fractal based prior gives good starting solution
and its efficient to generate such prior.

2.This method provides the realistic frequency
band in prior model close to those available in
the log data.

3.Results in high resolution estimates of the
model parameters.

4.Noisy characteristic in estimates could be
result of 1D modelling which can be
circumvented using 2D initial model based on
fractals.
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Challenges

» Beyond 1D - null space is not well
understood

» | ow frequency problem — what if
there are no well logs?

THE UNIVERSITY OF TEXAS AT AUSTIN
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An example of 2D
Inversion
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Thank You
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