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Motivation
• Finite element method has the advantage of 

dealing with irregular boundary condition for 
seismic modeling.

• It demands much more computational resources 
since it requires solving a matrix equation (mass 
matrix).

• Spectral element is supposed to be able to solve 
the wave propagation efficiently with a diagonal 
mass matrix and promising accuracy.



Motivation
• However most of the spectral element methods 

are implemented with quadrilateral or hexahedral 
meshes, due to the high accuracy quadrature rule 
and convenience of obtaining the interpolation 
polynomials.

• In contrast, if we want to simulate the wave 
propagation with irregular boundary, triangular 
mesh is preferable – this introduces additional 
difficulties.



Theory for 2D problems

• For 2D acoustic wave propagation, the wave 
equation has the following form

• where the mass and stiffness matrices are given 
by
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Difficulties in triangle

• In SEM, to get a diagonal mass matrix, we have to 
employ the Lagrange polynomial and quadrature rule.

• Unfortunately, in a triangular mesh, it is very hard for 
us to find out an explicit expression for Lagrange 
polynomial, and there are no GLL points which have 
been popularly employed in quadrilateral mesh.

• Some optimal points are obtained to replace the GLL 
points, and the best chosen basis function is 
introduced, to construct a Vandermonde system to 
get the Lagrange polynomial.



Optimal nodal position 
in a triangle

• Electro static points (Hesthaven,1998)
Employing minimization of  an electrostatic potential to determine the 
nodal set of points, and the nodes along the edge are the same as GLL 
points in a quadrilateral element.

• Fekete Points (Bos, 1983; Taylor et al.,2000)
points are obtained by minimizing the Legesgue constant, which reveal 
how close the polynomial approaches the function. The nodes along the 
edge are the identical to the GLL points as well.

• L2 Points (Chen and Babuska,1995)
points are obtained with an L2 norm optimal Legesgue constant, but the 
nodes along the edge are not identified with the GLL points.



Fekete points

(Taylor et al, 2000)



Lagrange polynomial

• The Lagrange polynomial has the expansion 
of

• Which can be transformed to the form of

where V is the N×N generalized Vandermonde matrix

1
( , ) ( , )

N
i

i j j
j

cλ ξ η φ ξ η
=

= ⋅∑

i i⋅ =V c e

( , )kj j k kV φ ξ η= T
1( ,..., ,... )i i i

i j Nc c c=c T(0,...,0,1,0,...0)i =e

( , )i j j ijλ ξ η δ=



Lagrange polynomial

• More general situation

• Given the basis function and after obtaining the 
grid positions, we can compute out the 
coefficients ci and then get the Lagrange 
polynomial.
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The basis function
• The most popular basis function for triangle is 

Dubiner polynomial (Dubiner, 1991).

• Dubiner polynomial is obtained from wrapped 
tensor product in the collapsed coordinate, which 
is an orthogonal one.
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Coordinate transform

(Standard element)

(Standard quadrilateral)

Arbitrary oriented coordinate (x,y)

(Warburton et al, 2006)

Collapsed coordinate system



Numerical experiments
We consider the homogeneous medium with 
regular boundary

Triangular meshes 
generated by GID



1st order TSEM
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2nd order TSEM
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The inversion of Vandermonde matrix
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This configuration is not eligible for quadrature rule.



3rd order TSEM
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Weight factors are positive

That’s eligible for simulating the 
wave propagation



4th order TSEM
• Some of the weight factors are negative

• As a result, the fourth order Fekete points 
are not eligible for seismic simulation.
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Dispersion behavior 
(40Hz)



Snapshot for 1st order (40Hz)



Snapshot for 3rd order (40Hz)



Dispersion Behavior 
(60Hz)



Snapshot for 1st order (60Hz)



Snapshot for 3rd order (60Hz)



Employ smaller (half) 
size (60Hz)



Snapshot for 1st order (60Hz)



Snapshot for 3rd order (60Hz)



Employ smaller (half) 
size (100Hz)



Snapshot for 1st order (100Hz)



Snapshot for 3rd order (100Hz)



Employ one third size 
(100Hz)



Snapshot for 1st order (100Hz)



Snapshot for 3rd order (100Hz)



Snapshot for 1st order (120Hz)



Snapshot for 3rd order (120Hz)



Topography problem

Source



1st order result (50 Hz)



1st order result (100 Hz)



3rd order result (100 Hz)



Discussion

• Is a higher order TSEM better than a 
lower order TSEM?

• Consider the storage requirements

• 1st order: each element has 3 nodes, in the stiffness 
matrix demands 9 element.

• 3rd order: each element has 10 nodes, in the stiffness 
matrix demands 100 element, that’s 10 times larger.

• 5th order: each element has 21 nodes, in the stiffness 
matrix demands 441 element, that’s 40 times larger.



Discussion
• The stability condition for a 3rd order TSEM is 

much more strict than a 1st order TSEM, which 
demands smaller time step.

• The interpolation function in higher order TSEM is 
more complicated, which may also spend a lot of 
time during interpretation.

• Reduction of the size of the element will confirm 
the accuracy for lower order TSEM, but memory 
consumption will increase, and the stability 
condition demands smaller time step.



Future Work

• Stability condition analysis

• Dispersion analysis

• Comparison with traditional methods
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